Limit and Integration of ##f_n (x)##

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Integration Limit
Click For Summary

Homework Help Overview

The discussion revolves around the evaluation of limits and integrals of a sequence of functions denoted as ##f_n(x)##. Participants are exploring the behavior of these functions as ##n## approaches infinity, particularly focusing on pointwise convergence and the implications of this convergence on the integral of the functions over the interval [-1, 1].

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Some participants attempt to clarify the nature of the limit being evaluated, questioning whether it should be expressed numerically or in terms of ##x##. Others explore the pointwise limit of the sequence and its implications for specific values of ##x##, particularly at the endpoints of the interval and at zero. There is also discussion regarding the convergence of integrals and theorems related to this topic.

Discussion Status

The discussion is active, with participants providing insights and corrections to each other's reasoning. Some have offered guidance on the nature of pointwise convergence and the limits of the functions involved. There is an ongoing exploration of the implications of these limits for the integral of the functions, with various interpretations being considered.

Contextual Notes

Participants are navigating the complexities of limits and integrals in the context of a homework assignment, which may impose specific constraints on how these concepts can be approached. There is a recognition of the potential divergence of certain limits and the need for careful consideration of the conditions under which limits and integrals can be exchanged.

songoku
Messages
2,509
Reaction score
393
Homework Statement
Please see below
Relevant Equations
Limit
Integration
1701219971027.png


My attempt:
(a)
I don't think I completely understand the question. By "evaluate ##\lim_{n\to \infty f_n (x)}##", does the question ask in numerical value or in terms of ##x##?

As ##x## approaches 1 or -1, the value of ##f_n (x)## approaches zero. As ##x## approaches zero, the value of ##f_n (x)## approaches ##\frac{n+1}{2}## so if ##n \to \infty##, then ##f_n (0) \to \infty##.

There would be a certain value of ##x \in [-1,1]## where ##\lim_{n\to \infty} f_n (x)=\infty## so the limit does not exist.

Does it make any sense?(b)
$$\lim_{n\to \infty} \int_{-1}^{1} f_n (x) dx$$
$$=\lim_{n\to \infty} \int_{-1}^{1} \frac{n+1}{2} (1-|x|)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \int_{-1}^{1} (1-x)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \left[-\frac{1}{n+1} (1-x)^{n+1}\right]^{1}_{-1} dx$$
$$=\lim_{n\to \infty} (2)^n$$

The limit does not converge so it does not exist. Is this correct?

Thanks

Edit: wait, I realize my mistake for (b). I will revise it in post#2
 
Last edited:
Physics news on Phys.org
(b)
$$\lim_{n \to \infty} \int_{-1}^{1} f_n (x) dx$$
$$=\lim_{n\to \infty} \int_{-1}^{1} \frac{n+1}{2} (1-|x|)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2}\left(\int_{-1}^{0} (1+x)^n dx + \int_{0}^{1} (1-x)^n dx\right)$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \left(\frac{1}{n+1}[(1+x)^{n+1}]_{-1}^{0} - \frac{1}{n+1} [(1-x)^{n+1}]_{0}^{1}\right)$$
$$=1$$
 
Have you seen some of the results/theorems regarding convergence of Integrals, like Monotone, Dominated Convergence, etc?
 
  • Like
Likes   Reactions: songoku
songoku said:
(a)
I don't think I completely understand the question. By "evaluate ##\lim_{n\to \infty f_n (x)}##", does the question ask in numerical value or in terms of ##x##?
This is called the pointwise limit or pointwise convergence. For each ##x## you have a sequence ##f_n(x)## and you are asked to calculate the limit of this sequence.
songoku said:
As ##x## approaches 1 or -1, the value of ##f_n (x)## approaches zero. As ##x## approaches zero, the value of ##f_n (x)## approaches ##\frac{n+1}{2}## so if ##n \to \infty##, then ##f_n (0) \to \infty##.

There would be a certain value of ##x \in [-1,1]## where ##\lim_{n\to \infty} f_n (x)=\infty## so the limit does not exist.

Does it make any sense?
This is not quite right. What is ##\lim_{n \to \infty} f_n(0)##? And, for ##x \ne 0##, what is ##\lim_{n \to \infty} f_n(x)##?

songoku said:
(b)
$$\lim_{n \to \infty} \int_{-1}^{1} f_n (x) dx$$
$$=\lim_{n\to \infty} \int_{-1}^{1} \frac{n+1}{2} (1-|x|)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2}\left(\int_{-1}^{0} (1+x)^n dx + \int_{0}^{1} (1-x)^n dx\right)$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \left(\frac{1}{n+1}[(1+x)^{n+1}]_{-1}^{0} - \frac{1}{n+1} [(1-x)^{n+1}]_{0}^{1}\right)$$
$$=1$$
That's right, although you could have saved some work by noting that the function is even (symmetrical about the y-axis).

If you are wondering about the purpose of this question, you have a sequence of functions whose limit looks like the Dirac Delta function.
 
  • Like
Likes   Reactions: songoku, SammyS and fresh_42
WWGD said:
Have you seen some of the results/theorems regarding convergence of Integrals, like Monotone, Dominated Convergence, etc?
I have not

PeroK said:
This is called the pointwise limit or pointwise convergence. For each ##x## you have a sequence ##f_n(x)## and you are asked to calculate the limit of this sequence.

This is not quite right. What is ##\lim_{n \to \infty} f_n(0)##? And, for ##x \ne 0##, what is ##\lim_{n \to \infty} f_n(x)##?
$$\lim_{n \to \infty} f_n(0)=\lim_{n \to \infty} \frac{n+1}{2} (1)^n=\lim_{n \to \infty} \frac{n+1}{2} \to \text{diverge}$$

For ##x \ne 0, \lim_{n \to \infty} f_n(x)=0##

So:
$$\lim_{n\to \infty} f_n (x) = f(x) =
\begin{cases}
\text{does not exist }&\text{if } x = 0 \\
0 & \text{if } x \neq 0, x \in [-1,1]
\end{cases}
$$

Is that correct? Thanks
 
songoku said:
I have not$$\lim_{n \to \infty} f_n(0)=\lim_{n \to \infty} \frac{n+1}{2} (1)^n=\lim_{n \to \infty} \frac{n+1}{2} \to \text{diverge}$$

For ##x \ne 0, \lim_{n \to \infty} f_n(x)=0##

So:
$$\lim_{n\to \infty} f_n (x) = f(x) =
\begin{cases}
\text{does not exist }&\text{if } x = 0 \\
0 & \text{if } x \neq 0, x \in [-1,1]
\end{cases}
$$

Is that correct? Thanks
Yes. If ##x\neq 0## then ##1-|x| = r\in [0,1)## and ##r^n ## goes faster to zero than ##n## goes to infinity.

The meaning of this exercise is that ##1= \lim \int \neq \int \lim =0.##

Pointwise convergence does in general not allow for exchange limits and integrals.

The theorem that grants the exchange requires ##|f_n|<h ## and ##\int h <\infty .##
 
Last edited:
  • Like
Likes   Reactions: PeroK and songoku
Thank you very much for all the help and explanation WWGD, PeroK, fresh_42
 
  • Like
Likes   Reactions: WWGD
songoku said:
Thank you very much for all the help and explanation WWGD, PeroK, fresh_42
P.S.: The phenomenon is called the vanishing mass at infinity. The "buckle" can vanish to the left or right, e.g. if you consider functions like ##g_n =\chi([0,1])-\chi([n,n+1])## where ##\chi ## is the indicator function (##=1## on the interval, and ##=0## elsewhere), or as in the case of the ##f_n## above to the top by getting larger and larger and slimmer and slimmer at the same time.
 
  • Like
Likes   Reactions: songoku
songoku said:
So:
$$\lim_{n\to \infty} f_n (x) = f(x) =
\begin{cases}
\text{does not exist }&\text{if } x = 0 \\
0 & \text{if } x \neq 0, x \in [-1,1]
\end{cases}
$$

Is that correct? Thanks
I would say:
$$\lim_{n\to \infty} f_n (x) =
\begin{cases}
+\infty&\text{if } x = 0 \\
0 & \text{if } x \neq 0, x \in [-1,1]
\end{cases}
$$
 
  • Like
Likes   Reactions: songoku

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K