vkash said:
why not you replying guys. who is wrong here?
I think
wolframalpha try to say it is infinity
The problem is that when you make a change of variables in an integral, the new variable has to be defined on every point of the interval of the old variable. If you have an integral on the interval t \in (-\infty,\infty), you cannot simply make the change x = 1/t, because the new variable x is not defined when t = 0, which exists on that interval. Hence, you must split the integral up first, before you can make that change of variables:
\int_{-\infty}^{\infty} dt~f(t) = \int_{-\infty}^{0} dt~f(t) + \int_{0}^{\infty} dt~f(t).
If you change variables now to t=1/x, you still have to be careful, because in the first term (from -infinity to 0), the variable is negative, whereas it is positive in the second term. If you just haphazardly let t = 1/x, then in the first integral you might mistakenly think the upper zero is +infinity, when really it should be -Infinity. You need to account for this, and this is what mathman was telling you. So, after letting t = 1/x, the integrals are really
-\int_{0}^{-\infty} dx~\frac{f(1/x)}{x^2} - \int_{\infty}^{0} dx~\frac{f(1/x)}{x^2} = \int_{-\infty}^{\infty} \frac{dx}{x^2}~f(1/x).
Wolframalpha will confirm that
\int_{-\infty}^\infty dx~\frac{\exp(-1/x^2)}{x^2} = \sqrt{\pi} = \int_{-\infty}^\infty dt~\exp(-t^2).
Any time your change of variables is undefined or multivalued on the interval of the original variable, you need to be careful. Consider the following integral as an example:
\int_{-a}^a dx~x^2.
You know the result is just (2/3)a^3, but suppose you changed variables to t = x^2, giving dt = 2x dx = 2\sqrt{t}dx. If you blindly apply this change of variables you might think you get
\frac{1}{2}\int_{a^2}^{a^2} dt~\sqrt{t} = 0.
The problem, of course, is that the change of variable is different on the [-a,0] and [0,a] intervals. On the negative interval, you need to select the negative root, x = -t
1/2, while on the positive interval you need to select the positive root, x = +t
1/2. Up above, I 'mistakenly' used the positive root on both intervals. If I am careful, this integral is really
-\frac{1}{2}\int_{a^2}^0 dt~\sqrt{t} + \frac{1}{2}\int_0^{a^2} dt~\sqrt{t} = \int_0^{a^2} dt~\sqrt{t} = \frac{2}{3}(a^2)^{3/2} = (2/3)a^3,
as expected.