MHB Limit of integral challenge of (e^(-x)cosx)/(1/n+nx^2)

Click For Summary
The discussion revolves around evaluating the limit of the integral of the function (e^(-x)cosx)/(1/n+nx^2) as n approaches infinity. Participants express appreciation for contributions and confirm the correctness of solutions provided. An alternative solution is also mentioned, indicating multiple approaches to the problem. The focus remains on finding the limit of the specified integral. The conversation highlights collaborative problem-solving in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find

\[\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx.\]
 
Mathematics news on Phys.org
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
 
Klaas van Aarsen said:
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
Thankyou, Klaas van Aarsen, for your participation and a correct answer! (Yes)An alternative solution:
\[I = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{1+n^2x^2}ndx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-u/n}\cos (u/n)}{1+u^2}du\]

Since the functions $\frac{e^{-u/n}\cos (u/n)}{1+u^2}$ are boundedly convergent for all $u$ and $n$ between $0$ and infinity, we may use the Bounded Convergence Theorem to move the limit inside the integral giving

\[I =\int_{0}^{\infty}\frac{1}{1+u^2}du = \frac{\pi}{2}.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...