MHB Limit of integral challenge of (e^(-x)cosx)/(1/n+nx^2)

Click For Summary
The discussion revolves around evaluating the limit of the integral of the function (e^(-x)cosx)/(1/n+nx^2) as n approaches infinity. Participants express appreciation for contributions and confirm the correctness of solutions provided. An alternative solution is also mentioned, indicating multiple approaches to the problem. The focus remains on finding the limit of the specified integral. The conversation highlights collaborative problem-solving in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find

\[\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx.\]
 
Mathematics news on Phys.org
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
 
Klaas van Aarsen said:
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
Thankyou, Klaas van Aarsen, for your participation and a correct answer! (Yes)An alternative solution:
\[I = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{1+n^2x^2}ndx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-u/n}\cos (u/n)}{1+u^2}du\]

Since the functions $\frac{e^{-u/n}\cos (u/n)}{1+u^2}$ are boundedly convergent for all $u$ and $n$ between $0$ and infinity, we may use the Bounded Convergence Theorem to move the limit inside the integral giving

\[I =\int_{0}^{\infty}\frac{1}{1+u^2}du = \frac{\pi}{2}.\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K