Limit of integral challenge of (e^(-x)cosx)/(1/n+nx^2)

Click For Summary
SUMMARY

The limit of the integral challenge presented is evaluated as follows: \[\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx\]. The correct answer is confirmed by Klaas van Aarsen, who provided an alternative solution. The integral involves the exponential decay function \(e^{-x}\) and the oscillatory function \(\cos x\), with the denominator influenced by the term \(\frac{1}{n}+nx^2\) as \(n\) approaches infinity.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with integral calculus
  • Knowledge of exponential and trigonometric functions
  • Experience with asymptotic analysis
NEXT STEPS
  • Study the properties of improper integrals
  • Learn about the Dominated Convergence Theorem
  • Explore techniques for evaluating limits of integrals
  • Investigate the behavior of oscillatory integrals
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral evaluation techniques will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find

\[\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx.\]
 
Physics news on Phys.org
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
 
Klaas van Aarsen said:
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
Thankyou, Klaas van Aarsen, for your participation and a correct answer! (Yes)An alternative solution:
\[I = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{1+n^2x^2}ndx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-u/n}\cos (u/n)}{1+u^2}du\]

Since the functions $\frac{e^{-u/n}\cos (u/n)}{1+u^2}$ are boundedly convergent for all $u$ and $n$ between $0$ and infinity, we may use the Bounded Convergence Theorem to move the limit inside the integral giving

\[I =\int_{0}^{\infty}\frac{1}{1+u^2}du = \frac{\pi}{2}.\]
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K