MHB Limit of integral challenge of (e^(-x)cosx)/(1/n+nx^2)

Click For Summary
The discussion revolves around evaluating the limit of the integral of the function (e^(-x)cosx)/(1/n+nx^2) as n approaches infinity. Participants express appreciation for contributions and confirm the correctness of solutions provided. An alternative solution is also mentioned, indicating multiple approaches to the problem. The focus remains on finding the limit of the specified integral. The conversation highlights collaborative problem-solving in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find

\[\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx.\]
 
Mathematics news on Phys.org
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
 
Klaas van Aarsen said:
Nice one.
My attempt:
Partial integration gives us:
\begin{aligned}\int\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \int e^{-x}\cos x\cdot \frac{n}{1+(nx)^2}\,dx \\
&= \int e^{-x}\cos x\,d\big(\arctan(nx)\big) \\
&= e^{-x}\cos x\arctan(nx) - \int\arctan(nx)\,d\big(e^{-x}\cos x\big)
\end{aligned}
Therefore:
\begin{aligned}\lim_{n\rightarrow \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}\,dx
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[e^{-x}\cos x\arctan(nx)\Big|_a^b - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{n\rightarrow \infty}\lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\lim_{n\rightarrow \infty}\arctan(nx)\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \int_a^b\frac\pi 2\,d\big(e^{-x}\cos x\big)\right] \\
&= \lim_{a\to 0^+,b\to\infty}\left[ - \frac\pi 2\,e^{-x}\cos x\right]_a^b \\
&=\frac \pi 2
\end{aligned}
Thankyou, Klaas van Aarsen, for your participation and a correct answer! (Yes)An alternative solution:
\[I = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{\frac{1}{n}+nx^2}dx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-x}\cos x}{1+n^2x^2}ndx = \lim_{n \to \infty}\int_{0}^{\infty}\frac{e^{-u/n}\cos (u/n)}{1+u^2}du\]

Since the functions $\frac{e^{-u/n}\cos (u/n)}{1+u^2}$ are boundedly convergent for all $u$ and $n$ between $0$ and infinity, we may use the Bounded Convergence Theorem to move the limit inside the integral giving

\[I =\int_{0}^{\infty}\frac{1}{1+u^2}du = \frac{\pi}{2}.\]
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K