Line integral of a vector field (Polar coordinate)

Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the work done, which acts on the particle
Relevant Equations
none
Hi,

I am not sure if I have solved task b correctly

Bildschirmfoto 2023-12-07 um 20.50.27.png

According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)## since ##f \in \mathbb{R}_{\neq 0}## is constant, ##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?

##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
 

Attachments

  • Bildschirmfoto 2023-12-07 um 20.50.27.png
    Bildschirmfoto 2023-12-07 um 20.50.27.png
    47.6 KB · Views: 104
Physics news on Phys.org
Lambda96 said:
According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)##
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.

Lambda96 said:
##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?
##\textbf F## is a vector while ##f## is a scalar. So, they can't be equal. In polar coordinates, you would express the force in the form ##\textbf{F}=(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##.

Lambda96 said:
##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
I think your line integral expression is correct.

However, it might be good to show your instructor how the integrand ##\dot{\mathbf r} \cdot \mathbf F## reduces to your expression. Thus, how would you write the vector ##\dot{\mathbf r}## in polar coordinate form ##(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##? Then you can take the dot product ##\dot{\mathbf r} \cdot \mathbf F##.

In part (a) you considered the case where ##\rho_0 = 0.1## and ##\rho_1 = 1##. But it said to let ##\rho_0## and ##\rho_1## take on general values again in parts (b) and (c).
 
Thank you TSny for your help 👍👍

TSny said:
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.
You're right, unfortunately, I had forgotten the f on the right-hand side of the equation.

In Cartesian coordinates, ##\textbf{F}## would then be ##\textbf{F}=f \cos(\phi) \textbf{e}_x + f \sin(\phi) \textbf{e}_y ##

##\textbf{Task b}##

##\dot{\textbf{r}}## would have to be derived using the chain rule, so it would look like this

##\dot{\textbf{r} }= \dot{\rho}(t) \textbf{e}_{\rho} + \rho(t) \dot{\phi}(t) \textbf{e}_{\phi}##

I'm still a little unsure about ##\textbf{F}##, would this be as follows?

##\textbf{F}=f \textbf{e}_{\rho} + 0 \textbf{e}_{\phi}##

Then, the scalar product of ##\dot{\textbf{r}} \cdot \textbf{F}=f \dot{\rho}(t)## since ## \textbf{e}_{\rho}## and ## \textbf{e}_{\phi}## are orthogonal to each other.

Is that correct?
 
That all looks very good to me.
 
Thank you TSny once again for your help and explanation, which helped me a lot 👍👍
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top