Line integral of a vector field (Polar coordinate)

Click For Summary
The discussion focuses on the line integral of a vector field in polar coordinates, specifically addressing the expression for the vector field F. It clarifies that F, represented as f in polar coordinates, cannot be equated to the scalar f. Participants emphasize the need to express the vector F in terms of its components in polar coordinates and to derive the velocity vector using the chain rule. The line integral calculation is confirmed as correct, but it is suggested to show how the integrand simplifies to the final expression. Overall, the conversation highlights the importance of proper vector representation and integration techniques in polar coordinates.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the work done, which acts on the particle
Relevant Equations
none
Hi,

I am not sure if I have solved task b correctly

Bildschirmfoto 2023-12-07 um 20.50.27.png

According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)## since ##f \in \mathbb{R}_{\neq 0}## is constant, ##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?

##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
 

Attachments

  • Bildschirmfoto 2023-12-07 um 20.50.27.png
    Bildschirmfoto 2023-12-07 um 20.50.27.png
    47.6 KB · Views: 107
Physics news on Phys.org
Lambda96 said:
According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)##
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.

Lambda96 said:
##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?
##\textbf F## is a vector while ##f## is a scalar. So, they can't be equal. In polar coordinates, you would express the force in the form ##\textbf{F}=(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##.

Lambda96 said:
##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
I think your line integral expression is correct.

However, it might be good to show your instructor how the integrand ##\dot{\mathbf r} \cdot \mathbf F## reduces to your expression. Thus, how would you write the vector ##\dot{\mathbf r}## in polar coordinate form ##(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##? Then you can take the dot product ##\dot{\mathbf r} \cdot \mathbf F##.

In part (a) you considered the case where ##\rho_0 = 0.1## and ##\rho_1 = 1##. But it said to let ##\rho_0## and ##\rho_1## take on general values again in parts (b) and (c).
 
Thank you TSny for your help 👍👍

TSny said:
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.
You're right, unfortunately, I had forgotten the f on the right-hand side of the equation.

In Cartesian coordinates, ##\textbf{F}## would then be ##\textbf{F}=f \cos(\phi) \textbf{e}_x + f \sin(\phi) \textbf{e}_y ##

##\textbf{Task b}##

##\dot{\textbf{r}}## would have to be derived using the chain rule, so it would look like this

##\dot{\textbf{r} }= \dot{\rho}(t) \textbf{e}_{\rho} + \rho(t) \dot{\phi}(t) \textbf{e}_{\phi}##

I'm still a little unsure about ##\textbf{F}##, would this be as follows?

##\textbf{F}=f \textbf{e}_{\rho} + 0 \textbf{e}_{\phi}##

Then, the scalar product of ##\dot{\textbf{r}} \cdot \textbf{F}=f \dot{\rho}(t)## since ## \textbf{e}_{\rho}## and ## \textbf{e}_{\phi}## are orthogonal to each other.

Is that correct?
 
That all looks very good to me.
 
Thank you TSny once again for your help and explanation, which helped me a lot 👍👍
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...