Line integral of a vector field (Polar coordinate)

Click For Summary

Homework Help Overview

The discussion revolves around the line integral of a vector field in polar coordinates, specifically focusing on the expression of the vector field and its representation in Cartesian coordinates. Participants are examining the relationship between scalar and vector quantities in this context.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the correct expression of the vector field in both polar and Cartesian coordinates, questioning the equality of scalar and vector forms. There is discussion about deriving the velocity vector in polar coordinates and its implications for the line integral.

Discussion Status

The discussion is active, with participants providing clarifications and corrections regarding the expressions used. Some guidance has been offered on how to express the vector in polar coordinates and the need for proper representation in the line integral. There is acknowledgment of previous mistakes, and participants are working towards a clearer understanding of the concepts involved.

Contextual Notes

Participants are encouraged to consider general values for parameters in their calculations, as indicated in the task requirements. There is an emphasis on maintaining clarity in the distinction between scalar and vector quantities throughout the discussion.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the work done, which acts on the particle
Relevant Equations
none
Hi,

I am not sure if I have solved task b correctly

Bildschirmfoto 2023-12-07 um 20.50.27.png

According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)## since ##f \in \mathbb{R}_{\neq 0}## is constant, ##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?

##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
 

Attachments

  • Bildschirmfoto 2023-12-07 um 20.50.27.png
    Bildschirmfoto 2023-12-07 um 20.50.27.png
    47.6 KB · Views: 121
Physics news on Phys.org
Lambda96 said:
According to the task, ##\textbf{F}=f \vec{e}_{\rho}## which in Cartesian coordinates is ##\textbf{F}=f \vec{e}_{\rho}= \left(\begin{array}{c} \cos(\phi) \\ \sin(\phi) \end{array}\right)##
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.

Lambda96 said:
##\textbf{F}## would simply be ##f## in polar coordinates, wouldn't it?
##\textbf F## is a vector while ##f## is a scalar. So, they can't be equal. In polar coordinates, you would express the force in the form ##\textbf{F}=(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##.

Lambda96 said:
##\dot{r}(t)## would be ##\dot{\rho}(t)## and therefore ##\dot{\rho}(t)=8 \pi \sin(4 \pi t) cos(4 \pi t)##

The line integral is:

##\int_{0}^{1} dt f \cdot 8 \pi \sin(4 \pi t) cos(4 \pi t)=0##
I think your line integral expression is correct.

However, it might be good to show your instructor how the integrand ##\dot{\mathbf r} \cdot \mathbf F## reduces to your expression. Thus, how would you write the vector ##\dot{\mathbf r}## in polar coordinate form ##(...) \textbf e_{\rho} + (...) \textbf e_{\phi}##? Then you can take the dot product ##\dot{\mathbf r} \cdot \mathbf F##.

In part (a) you considered the case where ##\rho_0 = 0.1## and ##\rho_1 = 1##. But it said to let ##\rho_0## and ##\rho_1## take on general values again in parts (b) and (c).
 
  • Like
Likes   Reactions: Lambda96
Thank you TSny for your help 👍👍

TSny said:
Did you leave out a factor of ##f## in the expression on the far right?

For Cartesian coordinates, I would express the force in the form ##\textbf{F}=(...) \textbf e_x + (...) \textbf e_y##.
For part (b) you are staying in polar coordinates.
You're right, unfortunately, I had forgotten the f on the right-hand side of the equation.

In Cartesian coordinates, ##\textbf{F}## would then be ##\textbf{F}=f \cos(\phi) \textbf{e}_x + f \sin(\phi) \textbf{e}_y ##

##\textbf{Task b}##

##\dot{\textbf{r}}## would have to be derived using the chain rule, so it would look like this

##\dot{\textbf{r} }= \dot{\rho}(t) \textbf{e}_{\rho} + \rho(t) \dot{\phi}(t) \textbf{e}_{\phi}##

I'm still a little unsure about ##\textbf{F}##, would this be as follows?

##\textbf{F}=f \textbf{e}_{\rho} + 0 \textbf{e}_{\phi}##

Then, the scalar product of ##\dot{\textbf{r}} \cdot \textbf{F}=f \dot{\rho}(t)## since ## \textbf{e}_{\rho}## and ## \textbf{e}_{\phi}## are orthogonal to each other.

Is that correct?
 
That all looks very good to me.
 
  • Like
Likes   Reactions: Lambda96
Thank you TSny once again for your help and explanation, which helped me a lot 👍👍
 
  • Like
Likes   Reactions: TSny

Similar threads

Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K