I Linear Algebra 1 problem, Vector Geometry: Lines

Student323
Messages
1
Reaction score
0
TL;DR Summary
Given the line L: x = (-3, 1) + t(1,-2) find all x on L that lie 2 units from (-3, 1).
Problem: Given the line L: x = (-3, 1) + t(1,-2) find all x on L that lie 2 units from (-3, 1).

I know the answer is (3 ± 2 / √5, -1 ± 4/√5) but I don't know where to start. I found that if t=2, x= (-5, 5) and the normal vector is (2, 1) but I am not sure if this information is useful or how to use it.
 
Physics news on Phys.org
Given a choice of t, can you write down the distance between L(t) and (-3,1)?
 
Student323 said:
Summary:: Given the line L: x = (-3, 1) + t(1,-2) find all x on L that lie 2 units from (-3, 1).

Problem: Given the line L: x = (-3, 1) + t(1,-2) find all x on L that lie 2 units from (-3, 1).

I know the answer is (3 ± 2 / √5, -1 ± 4/√5) but I don't know where to start. I found that if t=2, x= (-5, 5) and the normal vector is (2, 1) but I am not sure if this information is useful or how to use it.
You could intersect the line with a circle around (-3,1) with radius 2. For that set up the equation for the circle and use it for (x,y) on the line.
 
Another way is to step along the line until you get to a point that is ##2## units apart. Calculate the length between ##\binom{-3}{1}## and ##\binom{-3}{1}+t\cdot \binom{1}{-2}## which equals ##2##.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top