VinnyCee
- 486
- 0
For each matrix A, find vectors that span the image of A. Give as few vectors as possible.
\mathbf{A_1} =<br /> \left[ \begin{array}{cc}<br /> 1 & 1 \\<br /> 1 & 2 \\<br /> 1 & 3 \\<br /> 1 & 4<br /> \end{array} \right]
\mathbf{A_2} =<br /> \left[ \begin{array}{cccc}<br /> 1 & 1 & 1 & 1 \\<br /> 1 & 2 & 3 & 4 \\<br /> \end{array} \right]
My work:
T(\overrightarrow{x})\,=\,A_1\,\overrightarrow{x}
A_1\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \\<br /> x_4 <br /> \end{array} \right]\,=\,\left[ \begin{array}{cc}<br /> 1 & 1 \\<br /> 1 & 2 \\<br /> 1 & 3 \\<br /> 1 & 4<br /> \end{array} \right]\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2<br /> \end{array} \right]
x_1\,\left[ \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1 \\<br /> 1 <br /> \end{array} \right]\,+\,x_2\,\left[ \begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> 3 \\<br /> 4 <br /> \end{array} \right]
The image of A_1 is the space spanned by
v_1\,=\,\left[ \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1 \\<br /> 1 <br /> \end{array} \right]\,\,and\,\,v_2\,=\,\left[ \begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> 3 \\<br /> 4 <br /> \end{array} \right]
For the second part:
A_2\,\overrightarrow{x}
\left[ \begin{array}{cccc}<br /> 1 & 1 & 1 & 1 \\<br /> 1 & 2 & 3 & 4 \\<br /> \end{array} \right]\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \\<br /> x_4 <br /> \end{array} \right]
x_1\,\left[\begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> \end{array}\right]\,+\,x_2\,\left[\begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> \end{array}\right]\,+\,x_3\,\left[\begin{array}{c}<br /> 1 \\<br /> 3 \\<br /> \end{array}\right]\,+\,x_4\,\left[\begin{array}{c}<br /> 1 \\<br /> 4 \\<br /> \end{array}\right]
But now I don't know where to proceed to solve the second part. The B.O.B. says that the answer is
\left[\begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> \end{array}\right],\,\left[\begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> \end{array}\right]
How do I show such?
\mathbf{A_1} =<br /> \left[ \begin{array}{cc}<br /> 1 & 1 \\<br /> 1 & 2 \\<br /> 1 & 3 \\<br /> 1 & 4<br /> \end{array} \right]
\mathbf{A_2} =<br /> \left[ \begin{array}{cccc}<br /> 1 & 1 & 1 & 1 \\<br /> 1 & 2 & 3 & 4 \\<br /> \end{array} \right]
My work:
T(\overrightarrow{x})\,=\,A_1\,\overrightarrow{x}
A_1\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \\<br /> x_4 <br /> \end{array} \right]\,=\,\left[ \begin{array}{cc}<br /> 1 & 1 \\<br /> 1 & 2 \\<br /> 1 & 3 \\<br /> 1 & 4<br /> \end{array} \right]\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2<br /> \end{array} \right]
x_1\,\left[ \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1 \\<br /> 1 <br /> \end{array} \right]\,+\,x_2\,\left[ \begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> 3 \\<br /> 4 <br /> \end{array} \right]
The image of A_1 is the space spanned by
v_1\,=\,\left[ \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1 \\<br /> 1 <br /> \end{array} \right]\,\,and\,\,v_2\,=\,\left[ \begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> 3 \\<br /> 4 <br /> \end{array} \right]
For the second part:
A_2\,\overrightarrow{x}
\left[ \begin{array}{cccc}<br /> 1 & 1 & 1 & 1 \\<br /> 1 & 2 & 3 & 4 \\<br /> \end{array} \right]\,\left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \\<br /> x_4 <br /> \end{array} \right]
x_1\,\left[\begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> \end{array}\right]\,+\,x_2\,\left[\begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> \end{array}\right]\,+\,x_3\,\left[\begin{array}{c}<br /> 1 \\<br /> 3 \\<br /> \end{array}\right]\,+\,x_4\,\left[\begin{array}{c}<br /> 1 \\<br /> 4 \\<br /> \end{array}\right]
But now I don't know where to proceed to solve the second part. The B.O.B. says that the answer is
\left[\begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> \end{array}\right],\,\left[\begin{array}{c}<br /> 1 \\<br /> 2 \\<br /> \end{array}\right]
How do I show such?
Last edited: