SmellyGoomba
- 2
- 0
Homework Statement
Find A if (2A-1 - 3I)T =
2*<br /> \begin{pmatrix}<br /> -1 & 2\\<br /> 5 & 4<br /> \end{pmatrix}<br />
Homework Equations
The Attempt at a Solution
I have no idea if I'm even on the right track of solving this question...
I simplified the right hand side down to
<br /> \begin{pmatrix}<br /> -2 & 4\\<br /> 10 & 8<br /> \end{pmatrix}<br />
I took the transpose of both sides so the left hand side is just (2A-1 - 3I)
The right hand side is now
<br /> \begin{pmatrix}<br /> -2& 10\\<br /> 4 & 8<br /> \end{pmatrix}<br />
I multiplied both sides by A so
LH: A(2A-1 - 3I)
RH: A*<br /> \begin{pmatrix}<br /> -2& 10\\<br /> 4 & 8<br /> \end{pmatrix}<br />
Distribute the A so
LH: (A2A-1 - A3I) => (2I - A3I)
Bring the A3I part to the right side
LH = 2I
RH = A3I + A*<br /> \begin{pmatrix}<br /> -2& 10\\<br /> 4 & 8<br /> \end{pmatrix}<br />
Simplify the A3I part on the right hand side to get
A * <br /> \begin{pmatrix}<br /> 3 & 0\\<br /> 0 & 3<br /> \end{pmatrix}<br />
Factor out the A on the right hand side to get
A * (<br /> \begin{pmatrix}<br /> -2 & 10\\<br /> 4 & 8<br /> \end{pmatrix}<br />
+
<br /> \begin{pmatrix}<br /> 3 & 0\\<br /> 0 & 3<br /> \end{pmatrix}<br />
)
Add the two matrices together in the brackets to get
A * \begin{pmatrix}<br /> 1 & 10\\<br /> 4 & 11<br /> \end{pmatrix}<br />
So I'm left with
<br /> \begin{pmatrix}<br /> 2 & 0\\<br /> 0 & 2<br /> \end{pmatrix}<br />
=
A *
<br /> \begin{pmatrix}<br /> 1 & 10\\<br /> 4 & 11<br /> \end{pmatrix}<br />
Now there's no way I can somehow get A like that so I screwed up somewhere in there.. probably from the start lol
This looks so messy... am I allowed to upload my handwritten work on a site then post it here? Seems like a better alternative to the mess I have up there >_> Anyways I'm not really looking for a step by step on how to do this. Just a push in the right direction is all...