- #1
Felafel
- 171
- 0
Homework Statement
In ##E^3##, given the orthonormal basis B, made of the following vectors ## v_1=\frac{1}{\sqrt{2}}(1,1,0); v_2=\frac{1}{\sqrt{2}}(1,-1,0); v_3=(0,0,1)##
and the endomorphism ##\phi : E^3 \to E^3## such that ##M^{B,B}_{\phi}##=A where
(1 0 0)
(0 2 0) = A
(0 0 0)
find:
##\phi(e_1), \phi(e_2), \phi(e_3)## written with respect to the canonical basis
(where e1, e2, e3 are vector of the canonical basis ##\mathcal{E}##)
The Attempt at a Solution
here is what I thought, but having no solutions i don't know if it is correct:
I write the vectors of the canonical basis as combination of the vectors of B, also obtaining the ##M^{B,\mathcal{E}}##:
(1,0,0)=##a_{11} \cdot \frac{1}{\sqrt{2}}(1,1,0)+ a_{21} \cdot \frac{1}{\sqrt{2}}(1,-1,0)+ a_{31} \cdot (0,0,1)##
(0,1,0)=##a_{12} \cdot \frac{1}{\sqrt{2}}(1,1,0)+ a_{22} \cdot \frac{1}{\sqrt{2}}(1,-1,0)+ a_{32} \cdot (0,0,1)##
(0,0,1)=##a_{13} \cdot \frac{1}{\sqrt{2}}(1,1,0)+ a_{23} \cdot \frac{1}{\sqrt{2}}(1,-1,0)+ a_{33} \cdot (0,0,1)##
getting:
(##\frac{\sqrt{2}}{2}## ##\frac{\sqrt{2}}{2}## 0)
(##\frac{\sqrt{2}}{2}## -##\frac{\sqrt{2}}{2}## 0)= ##M^{B, \mathcal{E}}##
( 0 0 1)
so ##\phi(e_1), \phi(e_2), \phi(e_3)## are the columns of this matrix.
Is it correct?
thank you in advance :)