Integrating vector-valued functions along curves

  • #1
1,079
89
Homework Statement
Let ##\mathbf{f}=(ay^2,bx^2)## and let ##D## be region given by ##0\leq x\leq 1,0\leq y\leq x##. Compute ##\int_{\partial D}\mathbf{f}\cdot \mathbf{d}r## and ##\int_{\partial D}\mathbf{f}\cdot\mathbf{N}ds##.
Relevant Equations
Arc-length differential: ##ds=|r'|dt##
Unit vector normal to ##r'(t)##: ##\mathbf{N}##
The following parametrizations assume a counter-clockwise orientation for the unit square; the bounds are ##0\leq t\leq 1##.

Hypotenuse ##(C_1)##
%%%
##r(t)=(1-t,1-t)##
##dr=(-1,-1)\,dt##
##f(r(t))=f(1-t,1-t)=(a(1-t)^2,b(1-t)^2)##
##f\cdot dr=-(a+b)(1-t^2)\,dt##
\begin{align}
\int_{C_1} f\cdot dr&=&\int_0^1 -(a+b)(1-t)^2\,dt\\
&=&(a+b)\int_0^1 (1-t)^2(-dt)\\
&=&(a+b)\int_0^1(1-t)^2d(1-t)\\
&=&\frac{1}{3}(a+b)(1-t)^3|0^1\\
&=&-\frac{1}{3}(a+b)
\end{align}

Bottom ##(C_2)##
%%%
##r(t)=(t,0)##
##dr=(1,0)\,dt##
##f(r(t))=f(t,0)=(0,bt^2)##
##f\cdot dr=0##
##\int_{C_2}f\cdot dr=0##

Right ##(C_3)##
%%%
##r(t)=(1,t)##
##dr=(0,1)\,dt##
##f(r(t))=f(1,t)=(at^2,b)##
##f\cdot dr=b##
##\int_{C_3}f\cdot dr=\int_0^1b\,dt=b##

##\int_{\partial D} f\cdot dr=\sum_{i=1}^3\int_{C_i}f\cdot dr=-\frac{1}{3}(a+b)+b=\frac{2}{3}b-\frac{1}{3}a##

I don't know how to get started on the second part because I cannot figure out which unit normal vector to use for each side of the right triangle. For example, do I use ##N=(-1,0)## for ##C_3## or do I use ##N=(1,0)##? Likewise, do I use ##N=\sqrt{\frac{1}{2}}(1,-1)## or ##N=\sqrt{\frac{1}{2}}(-1,1)## in the integral? This part confuses me. Should I use the outward-normal-first vector, in other words, the normal vector that points outward from the given side of the triangle? I remember this being mentioned in my vector analysis course, but I do not particularly recall its significance.
 
Last edited:
  • #2
The convention is to use the outward normal.
 
  • Like
Likes Eclair_de_XII
  • #3
Thank you. This is very useful to keep in mind.

Hypotenuse ##(C_1)##
%%%
##N=\sqrt{\frac{1}{2}}(-1,1)##
##f=(1-t)^2(a,b)##
##r'=-(1,1)##
##ds=|r'|\,dt=\sqrt{2}\,dt##

##f\cdot N=\sqrt{\frac{1}{2}}(1-t)^2(-a+b)\,dt##
\begin{align}
\int_{C_1} f\cdot N&=&\int_0^1 \sqrt{\frac{1}{2}}(b-a)(1-t)^2\sqrt{2}\,dt\\
&=&(a-b)\int_0^1(1-t)^2(-1\cdot dt)\\
&=&(a-b)\int_0^1(1-t)^2\,d(1-t)\\
&=&\frac{1}{3}(a-b)(1-t)^3|_0^1\\
&=&-\frac{1}{3}(a-b)
\end{align}

Bottom ##(C_2)##
%%%
##N=(0,-1)##
##ds=dt##
##f=(0,bt^2)##
##f\cdot N=-bt^2##
##\int_{C_2} f\cdot N\,ds=\int_0^1 -bt^2\,dt=-\frac{1}{3}bt^3|_0^1=-\frac{1}{3}b##

Right ##(C_3)##
%%%
##N=(1,0)##
##ds=dt##
##f=(at^2,b)##
##f\cdot N=at^2##
##\int_{C_3} f\cdot N\,ds=\int_0^1at^2=\frac{1}{3}a##

\begin{align}
\int_{\partial D} f\cdot N&=&\sum_{i=1}^3\int_{C_i} f\cdot N\,ds\\
&=&\left(-\frac{1}{3}a+\frac{1}{3}b\right)+\left(-\frac{1}{3}b\right)+\left(\frac{1}{3}a\right)\\
&=&0
\end{align}
 
  • #4
Why the hypotenuse ##(C_1)## has been parameterized as ##r(t)=(1-t,1-t)## and not as ##r(t)=(-t,-t)##?
EDIT: NVM I found out myself, the slope would have been the same and direction counterclockwise but ##f(r(t))## would be wrong... ##r(t)=(t,t)## won't do it either cause it is clock wise oriented...
 
Last edited:
  • #5
I think it is possible to use the parametrization ##r(t)=(-t,-t)##, but you'd have to set the bounds to ##-1\leq t\leq 0##. But with the bounds, ##0\leq t\leq1##, the function parametrizes a line from the origin to the point ##(-1,-1)##.
 
  • #6
But with the bounds, 0≤t≤1, the function parametrizes a line from the origin to the point (−1,−1).
Yes but now that I think of it it is ##f(t,t)=f(-t,-t)## because ##f(x,y)=(ay^2,bx^2)## so I think we can use ##r(t)=(-t,-t)## without changing the bounds.

EDIT: I did it with ##r(t)=(-t,-t)## and the result remains the same that is ##-\frac{1}{3}(a+b)##.
 

Suggested for: Integrating vector-valued functions along curves

Replies
3
Views
765
Replies
18
Views
764
Replies
58
Views
2K
Replies
14
Views
1K
Replies
1
Views
539
Replies
2
Views
574
Replies
12
Views
756
Replies
5
Views
651
Back
Top