[Linear Algebra] Linear Transformations, Kernels and Ranges

Click For Summary
The discussion focuses on determining the linearity of various transformations and finding their kernels and ranges. Transformations T(a) and T(b) are confirmed as linear, with their respective kernels and ranges identified. Transformation T(c) is deemed non-linear due to failing the scalar multiplication condition, while T(d) is linear with its kernel and range established. Transformation T(e) is also non-linear, as it involves squaring, which violates linearity principles. The overall conclusion highlights that transformations T(a), T(b), and T(d) are linear, while T(c) and T(e) are not.
iJake
Messages
41
Reaction score
0

Homework Statement



Prove whether or not the following linear transformations are, in fact, linear. Find their kernel and range.

a) ## T : ℝ → ℝ^2, T(x) = (x,x)##
b) ##T : ℝ^3 → ℝ^2, T(x,y,z) = (y-x,z+y)##
c) ##T : ℝ^3 → ℝ^3, T(x,y,z) = (x^2, x, z-x) ##
d) ## T: C[a,b] → ℝ, T(f) = f(a)##
e) ## T: C[a,b] → C[a,b], T(f) = f^2##

Homework Equations


[/B]
Transformations are linear if ##T(a+b) = T(a) + T(b)## and if ##T(c \cdot a) = c \cdot T(a)##
##Ker(T) = \{T(x) = 0\}##
##Im(T) = \{T(x) \in W | x \in V\}##

The Attempt at a Solution


[/B]
a)
##T((x,y,z) + (a,b,c)) = ((y-x) + (b-a), (z+y) + (c+b)) = (y-x, z+y) + (b-a, c+b) = T(x,y,z) + T(a,b,c)##
##T(c \cdot (x,y,z)) = T((cx, cy, cz)) = (cy-cx, cz+cy) = (c \cdot (y-x), c \cdot (z+y)) = c \cdot (y-x, z+y) = c\cdot T(x,y,z)##

T is linear.

##Ker(T) = 0##
##Im(T) = \{(a,a) | a \in ℝ\} = <(1,1)>##

b)
##T((x,y,z) + (a,b,c)) = ((y-x) + (b-a), (z+y)+(c+b)) = (y-x, z+y) + (b-a, c+b) = T(x,y,z) + T(a,b,c)##
##T(c \cdot (x,y,z)) = T((cx,cy,cz)) = (cy-cx, cz+cy) = (c \cdot (y-x), c \cdot (z+y)) = c \cdot (y-x, z+y) = c \cdot T(x,y,z)##

T is linear.

I will try to save some space.

##Ker(T) = \{(x,y,z) \in \mathbb R^3 | T(x,y,z) = (0,0,0)\}##
##Ker(T) = \{(y,y,-y) | y \in ℝ\} = <(1,1,-1)>##
##Im(T) = y(1,1) + x(1,0) + z(0,1) = <(1,1), (1,0), (0,1)>##

c)
##T((x,y,z) + (a,b,c))## holds, but ##T(c \cdot (x,y,z))## does not hold. I am not sure if the correct notation would be that it works out to ##c^2 \cdot T(x) + c \cdot T(y,z)## but in any case it works out to a non-linear transformation.

##Ker(T) = \{(x,y,z) | (x^2, x, z-x) = (0,0,0)\}##
##(x,y,z) = (0,y,0) | y \in ℝ##
##Ker(T) = \{(0,y,0) | y \in ℝ\} = <(0,1,0)>##

##Im(T)## is not linear.

d)
##T(f+g) = (f(a) + g(a)) = f(a) + g(a) = T(f) + T(g)##
##T(c \cdot f) = (c \cdot f)(a) = c \cdot f(a) = c \cdot T(f)##

T is linear.

##Ker(T) = \{f \in C[a,b] | T(f) = 0, f \in C[a,b] | f(a) = 0\}##
##Im(T) = \{r \in ℝ | r = f(a), f \in C[a,b]\}##

e)
##T(f+g) = (f^2 + g^2) = f^2 + g^2 = T(f) + T(g)##
##T(c \cdot f) = (c \cdot f)^2 = c^2 \cdot f^2 = c^2 \cdot T(f)##

T is not linear.
##Ker(T) = \{f \in C[a,b] | f^2 = 0\}##
##Im(T)## is not linear.
 
Physics news on Phys.org
look, when you see squared powers, think non linear; linear means first order. so c and e are immediately out. the others look ok.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K