- #1
- 27
- 0
Homework Statement
The Question:
The map is given: [tex]L\rightarrow \Re_{2} \rightarrow \Re_{3}, p \rightarrow[/tex] p' + q*p , with q(x) = x.
Now i should find the representing matrix for L with respect to the bases {1+x, x+x2, 1+x2} for [tex] \Re_{2}[/tex] and {1,x,x+x2,1+x3} for [tex] \Re_{3}[/tex].
The Attempt at a Solution
I don't know what i should do here ^^. But i tried to calculate it.
p is the polynomial, so i thought its like this:
p = a0(1+x) + a2(x+x^2) + a3(1+x^2)
So i can calculate [tex]p\rightarrow p' +q*p:[/tex]
[tex]p\rightarrow a_{0}+a_{1} + 3a_{1}x + a_{0}x + 2a_{2}x^2 + 2a_{1}x^2 + 2a_{2}x^3[/tex]
Then i just counted the coressponding values together, means
a0 ~ 1+x --> 1 + 1 + 0 + 0
a1 ~ x+x2 --> 1 + 3 + 2 + 0
a2 ~ 1+x2 --> 0 + 0 + 2 + 2
Puting this all together gives the repr. Matrix
| 1 1 0 |
| 1 3 0 |
| 0 2 2 |
| 0 0 2 |
Is this somehow correct or completely wrong? ^^
I'm missing the second base here..
Does anyone knows a good website (linear algebra 1) ? I have exam in little more than week and still a lot to learn.
Thx
Mumba