[Linear Algebra] Show that H ∩ K is a subspace of V

Click For Summary
SUMMARY

The discussion focuses on proving that the intersection of two subspaces H and K of a vector space V, denoted as H ∩ K, is itself a subspace of V. Participants reference Theorem 1 from "Linear Algebra and Its Applications, 5th Edition" by David Lay, which states that the span of a set of vectors is a subspace. The conversation also includes an example in ℝ² demonstrating that the union of two subspaces is not necessarily a subspace, using specific sets defined in ℝ². The final conclusion emphasizes the necessity of verifying closure under vector addition and scalar multiplication for subspace definitions.

PREREQUISITES
  • Understanding of vector spaces and subspaces
  • Familiarity with the concept of span in linear algebra
  • Knowledge of closure properties (vector addition and scalar multiplication)
  • Basic comprehension of examples in ℝ²
NEXT STEPS
  • Study the definition and properties of vector spaces and subspaces in detail
  • Learn about the implications of Theorem 1 regarding spans and subspaces
  • Explore counterexamples to subspace definitions, particularly in ℝ²
  • Investigate additional examples of intersections and unions of subspaces
USEFUL FOR

Students of linear algebra, educators teaching vector space concepts, and anyone seeking to deepen their understanding of subspace properties and examples in vector spaces.

bornofflame
Messages
56
Reaction score
3

Homework Statement


From Linear Algebra and Its Applications, 5th Edition, David Lay
Chapter 4, Section 1, Question 32
Let H and K be subspaces of a vector space V. The intersection of H and K is the set of v in V that belong to both H and K. Show that H ∩ K is a subspace of V. (See figure.) Give an example in ℝ2 to show that the union of two subspaces is not, in general, a subspace.
[LA]HintersectK.png


Homework Equations

/theorems[/B]
Theorem 1: If v1,...vp are in vector space V, then Span{v1,...vp} is a subspace of V.

The Attempt at a Solution


This is what I started off with:
Let u,v ∈ H; s, t ∈ K
0v ∈ H, K
u + v ∈ H
s + t ∈ K

In the middle of writing that down, I was thinking that v is a set of vectors in V, and that H ∩ K = Span{v}, therefore, per Theorem 1 in the book, H ∩ K is a subspace of V.

Written as:
v ∈ V
H ∩ K = Span{v}
∴ H ∩ K is a subspace of V per Theorem 1.

For the second part I used the following:
m, n ∈ ℝ2
m = {[x, y]: x, y ≥ 0}
n = {[x, y]: x ≤ 0, y ≥ 0}
m ∪ n = {[x, y]: x = ℝ, y ≥ 0}
let c = -1, u = [-1, 3]
cu = [1, -3]
cu ∉ m ∪ n
∴ m ∪ n is not a subspace

Is my train of thinking correct concerning this problem?
 

Attachments

  • [LA]HintersectK.png
    [LA]HintersectK.png
    7.2 KB · Views: 2,369
Physics news on Phys.org
bornofflame said:

Homework Statement


From Linear Algebra and Its Applications, 5th Edition, David Lay
Chapter 4, Section 1, Question 32
Let H and K be subspaces of a vector space V. The intersection of H and K is the set of v in V that belong to both H and K. Show that H ∩ K is a subspace of V. (See figure.) Give an example in ℝ2 to show that the union of two subspaces is not, in general, a subspace.
View attachment 224838

Homework Equations

/theorems[/B]
Theorem 1: If v1,...vp are in vector space V, then Span{v1,...vp} is a subspace of V.

The Attempt at a Solution


This is what I started off with:
Let u,v ∈ H; s, t ∈ K
0v ∈ H, K
u + v ∈ H
s + t ∈ K

In the middle of writing that down, I was thinking that v is a set of vectors in V, and that H ∩ K = Span{v}, therefore, per Theorem 1 in the book, H ∩ K is a subspace of V.

Written as:
v ∈ V
H ∩ K = Span{v}
∴ H ∩ K is a subspace of V per Theorem 1.

For the second part I used the following:
m, n ∈ ℝ2
m = {[x, y]: x, y ≥ 0}
n = {[x, y]: x ≤ 0, y ≥ 0}
m ∪ n = {[x, y]: x = ℝ, y ≥ 0}
let c = -1, u = [-1, 3]
cu = [1, -3]
cu ∉ m ∪ n
∴ m ∪ n is not a subspace

Is my train of thinking correct concerning this problem?
For the first part, you would need to show that ##H \cap K## is the span of v. That is easy to do using the definition of subspace. Since I don't have your textbook at hand, I don't know what Theorem 1 says. Perhaps it covers the missing pieces.
For the second part, your example does not work because m and n are not subspaces of ℝ2 as you have defined them. (Check the definition of subspace again.)
 
  • Like
Likes   Reactions: bornofflame
bornofflame said:

Homework Statement


From Linear Algebra and Its Applications, 5th Edition, David Lay
Chapter 4, Section 1, Question 32
Let H and K be subspaces of a vector space V. The intersection of H and K is the set of v in V that belong to both H and K. Show that H ∩ K is a subspace of V. (See figure.) Give an example in ℝ2 to show that the union of two subspaces is not, in general, a subspace.
View attachment 224838

Homework Equations

/theorems[/B]
Theorem 1: If v1,...vp are in vector space V, then Span{v1,...vp} is a subspace of V.
I don't see that this theorem is relevant.
bornofflame said:

The Attempt at a Solution


This is what I started off with:
Let u,v ∈ H; s, t ∈ K
0v ∈ H, K
u + v ∈ H
s + t ∈ K
This isn't a good start, since you are already given that H and K are subspaces of V. So we know that both are closed under vector addition and scalar multiplication.
A better start would be to assume that u and v are arbitrary vectors in H ∩ K. Show that their sum is also in H ∩ K, and show that any scalar multiple of either one of them (say u) is also in H ∩ K.
bornofflame said:
In the middle of writing that down, I was thinking that v is a set of vectors in V, and that H ∩ K = Span{v}, therefore, per Theorem 1 in the book, H ∩ K is a subspace of V.
But some of these vectors v don't belong to H ∩ K, so I don't think this gets you anywhere.
bornofflame said:
Written as:
v ∈ V
H ∩ K = Span{v}
∴ H ∩ K is a subspace of V per Theorem 1.

For the second part I used the following:
m, n ∈ ℝ2
m = {[x, y]: x, y ≥ 0}
n = {[x, y]: x ≤ 0, y ≥ 0}
m ∪ n = {[x, y]: x = ℝ, y ≥ 0}
let c = -1, u = [-1, 3]
cu = [1, -3]
cu ∉ m ∪ n
∴ m ∪ n is not a subspace

Is my train of thinking correct concerning this problem?
See my comments.
 
  • Like
Likes   Reactions: bornofflame
tnich said:
For the second part, your example does not work because m and n are not subspaces of ℝ2 as you have defined them. (Check the definition of subspace again.)

Oops. I either misread that or wasn't thinking. Either way. Ugh. I'll go check that now to see fix my mistake.

Mark44 said:
I don't see that this theorem is relevant.
This isn't a good start, since you are already given that H and K are subspaces of V. So we know that both are closed under vector addition and scalar multiplication.
I see what you mean. That didn't occur to me.

Mark44 said:
A better start would be to assume that u and v are arbitrary vectors in H ∩ K. Show that their sum is also in H ∩ K, and show that any scalar multiple of either one of them (say u) is also in H ∩ K.
But some of these vectors v don't belong to H ∩ K, so I don't think this gets you anywhere.

Second stab:
H, K are subspaces in V
H ∩ K = {v} in V
To be a subspace of V, H ∩ K must comply with the following:
1. Contain the 0 vector:
0v ∈ H ∩ K b/c H, K are subspaces and therefore contain the 0v

2. Closed under vector addition:
Let u, v ∈ H ∩ K, then u, v ∈ H, K which means that u + v ∈ H, K which means that u + v ∈ H ∩ K

3. Closed under scalar multiplication:
Let c ∈ ℝ, u ∈ H ∩ K, then u ∈ H, K and cu ∈ H, K which means that cu ∈ H ∩ K

It took me a second b/c I don't think I really understood what was being asked. Once that clicked, the work became much easier.

I'm going to work on part 2 now.
 
For part deux:
m, n are subspaces of V
To show that m ∪ n is NOT a subspace of V, it must fail one of the following:
1. Contains the 0v: yes, move on
2. Closed under vector addition:
Let m = {[x, y]: x = 0, y = ℝ}, n = {[x, y]: x = ℝ, y = 0}
Let u = [0, 1], v = [1, 0]
u + v ∉ m
u + v ∉ n
∴ u + v ∉ m ∪ n
 
bornofflame said:
For part deux:
m, n are subspaces of V
To show that m ∪ n is NOT a subspace of V, it must fail one of the following:
1. Contains the 0v: yes, move on
2. Closed under vector addition:
Let m = {[x, y]: x = 0, y = ℝ}, n = {[x, y]: x = ℝ, y = 0}
Let u = [0, 1], v = [1, 0]
u + v ∉ m
u + v ∉ n
∴ u + v ∉ m ∪ n
This is a good counterexample, but your notation could use a couple of tweaks.
Let M = {u ∈ R2 : x = 0, y ∈ R}, and let N = {v ∈ R2 : x ∈ R, y = 0 }
Let u = <0, 1>, v = <1, 0>
u + v = <1, 1> ∉ M ∪ N
So M ∪ N is not closed under vector addition, and isn't a subspace of R2
 
  • Like
Likes   Reactions: bornofflame

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K