MHB Linear and angular velocity of 2 pulleys and a belt.

Click For Summary
A belt connects two pulleys with radii of 5 inches and 3 inches, with the larger pulley rotating at 1000 revolutions per minute. The linear velocity of the belt is calculated to be approximately 43.63 feet per second. The smaller pulley, with a radius of 3 inches, is determined to be rotating at about 1667 revolutions per minute. The calculations confirm that the methods used for determining both the linear speed of the belt and the angular velocity of the smaller pulley are accurate. This discussion highlights the relationship between the radii of the pulleys and their respective rotational speeds.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
A belt contects two pulleys with radii $\displaystyle5\text { in}$ and $3\text { in}$

the $\displaystyle5\text { in}$ pulley is rotating at $\displaystyle\frac{1000\text{ rev}}{\text{min}}$

What is the linear $\displaystyle\text{v}$ in $\displaystyle\frac{\text{ft}}{\text{sec}}$ of the belt?

$\displaystyle \text{v}=
\frac{1000\text{rev}}{\text{min}}
\cdot\frac{\text{min}}{60\text{ sec}}
\cdot\frac{10\pi \text{ in}}{\text{rev}}
\cdot\frac{\text{ ft}}{12 \text{in}}
=\frac{125\pi\text{ ft}}{9\text{sec}}
=43.63\frac{\text{ft}}{\text{sec}}
$

How many revolutions per min is the $\text{3 in}$ pulley making?

so
$\displaystyle \omega_{3in}
=\frac{5}{3}
\cdot\frac{1000\text{rev}}{\text{min}}
\approx 1667\frac{\text{rev}}{\text{min}}$

no ans in bk on this so hope ans here is perhaps it.
 
Mathematics news on Phys.org
To find the linear speed of the belt, we may state (using the information about the larger pulley):

$$v=r\omega=\left(5\text{ in}\frac{1\text{ ft}}{12\text{ in}} \right)\left(1000\frac{\text{rev}}{\text{min}} \frac{2\pi\text{ rad}}{1\text{ rev}} \frac{1\text{ min}}{60\text{ s}} \right)=\frac{125}{9}\pi\frac{\text{ ft}}{\text{s}}$$

This agrees with your result, although I think the way I have written the intermediary steps makes it a bit clearer what is going on. (Bandit)

Now, to find the revolutions per minute of the smaller pulley (the second pulley), we may write (as we did in your previous topic):

$$\omega_2=\frac{r_1}{r_2}\omega_1$$

You have done this correctly as well. (Clapping)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K