1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Linear First order ODE problem

  1. Oct 26, 2008 #1
    1. The problem statement, all variables and given/known data

    x[tex](\theta)[/tex]= x tanθ−cosθ

    2. Relevant equations

    The integrating factor is (note it should be negative tan, but the latex won't display it);

    [tex]I= \int -tan \theta\ d \theta[/tex]

    The solution is given by;

    [tex]x \ e^{I}=-\int \ e^{I}*cos\theta\ d \theta[/tex]

    3. The attempt at a solution

    [tex]I=\int \tan \theta\ d \theta[/tex]
    [tex]=-(-\ln|cos \theta |)[/tex]

    So, [tex]e^{I}=cos \theta[/tex]


    [tex]x*cos \theta = \int \ cos^{2} \theta d \theta[/tex]

    Using the half angle formulae gives,

    [tex]x*cos \theta =\frac{1}{2} \int \cos(2 \theta) +1[/tex]

    Which, after integration and simplification gives,

    [tex]x=-\frac{1}{2}*(sin \theta + \theta\ sec\theta)[/tex]

    When I check my answer I end up with zero,

    [tex]\frac{dx}{d \theta}=-\frac{1}{2}*(cos \theta \ +\ sec\theta \ +\ \theta*sec \theta \tan \theta)[/tex]

    [tex]x*tan \theta=-\frac{1}{2}*(sin \theta * tan \theta + \theta* sec \theta* tan \theta)[/tex]

    [tex]\frac{dx}{d \theta}-x*tan \theta=\frac{1}{2}*[(\frac{cos^{2}\theta\ {-1}}{cos \theta}-\theta* sec \theta* tan \theta)-(-\frac{sin^{2} \theta}{cos \theta}-\theta* sec \theta* tan \theta)][/tex]

    [tex]=\frac{sin^{2} \theta \ - \ (1-cos^{2} \theta)}{2* cos \theta}=0[/tex]

    Please could someone go through my calculation and see where my mistake is?
    Last edited: Oct 26, 2008
  2. jcsd
  3. Oct 26, 2008 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    I have corrected that: you had a "\" before the "-".

    Haven't you forgotten the "-" on the right side?

    After integration, this is x cos(theta)= 1/2(theta)- (1/4) sin(2\theta)

    You appear to have forgotten the "-" on the "- cos(theta)" to begin, with as well as the "2" in the 2 theta, and, finally, the theta from integrating "1".

  4. Oct 26, 2008 #3
    Hi HallsofIvy,

    I've always struggled with minus signs, I find them really confusing! :redface:

    When I simplified I used [tex]\frac{1}{2}sin 2\theta=sin\theta*cos\theta[/tex].

    Popping in that minus and the missing theta gave me the correct solution, I think.

    [tex]x=-\frac{1}{2}sin\theta + \theta*cos\theta[/tex]

    To check;

    [tex]\frac{dx}{d\theta}=-\frac{1}{2}*(cos\theta + sec\theta + \theta*sec\theta*tan\theta)[/tex]

    [tex]x*tan\theta=-\frac{1}{2}*(\frac{sin^{2}\theta}{cos\theta} + \frac{\theta*sin\theta}{cos^{2}\theta})[/tex]

    [tex]\frac{dx}{d\theta}-x*tan\theta=-\frac{1}{2}*(cos\theta + sec\theta + \theta*sec\theta*tan\theta - \frac{sin^{2}\theta}{cos\theta} -\frac{\theta*sin\theta}{cos^{2}\theta})[/tex]

    [tex]=-\frac{1}{2}*[\frac{cos^{2}\theta + 1 -sin^{2}\theta}{cos\theta}][/tex]

    [tex]=-\frac{1}{2}*[\frac{2*cos^{2}\theta -1 + 1}{cos\theta}]=-cos\theta[/tex]

    Does this look reasonable to you?

    Thanks for your help, I was going round in circles with that problem!
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Linear First order ODE problem