- #1
- 20
- 0
I think I've solved this problem, but the examples in my textbook are not giving me any indication as to whether my reasoning is sound.
Is the transformation
[tex]T(M) = M\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex]
from [tex]\mathbb{R}[/tex]2x2 to [tex]\mathbb{R}[/tex]2x2 linear? If it is, determine whether it is an isomorphism.
T(f + g) = T(f) + T(g)
T (kf) = k T(f)
T-1(T(M)) = M
T(M1+M2) = T(M1) + T(M2)
T(kM) = k T(M
Therefore, T(M) is a linear transformation.
[tex]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex] is not invertible, so T is an isomorphism if Ker(T) = 0.
[tex]\left[ \begin{array}{cccc} m_1 & m_2 \\ m_3 & m_4\end{array} \right]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]=\left[ \begin{array}{cccc} m_1+3m_2 & 2m_1+6m_2 \\ m_3+3m_4 & 2m_3+6m_4\end{array} \right]=\left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]
Then [tex]m_1 = -3m_2[/tex], [tex]m_3 = -3m_4[/tex] and
[tex]Ker(T)=\left[ \begin{array}{cccc} -3 & 1 \\ -3 & 1\end{array} \right]\neq \left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]
Therefore, the transformation T(M) is linear, but is not an isomorphism.
So I guess my question is, have I done this correctly? Thanks for any help.
Homework Statement
Is the transformation
[tex]T(M) = M\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex]
from [tex]\mathbb{R}[/tex]2x2 to [tex]\mathbb{R}[/tex]2x2 linear? If it is, determine whether it is an isomorphism.
Homework Equations
T(f + g) = T(f) + T(g)
T (kf) = k T(f)
T-1(T(M)) = M
The Attempt at a Solution
T(M1+M2) = T(M1) + T(M2)
T(kM) = k T(M
Therefore, T(M) is a linear transformation.
[tex]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex] is not invertible, so T is an isomorphism if Ker(T) = 0.
[tex]\left[ \begin{array}{cccc} m_1 & m_2 \\ m_3 & m_4\end{array} \right]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]=\left[ \begin{array}{cccc} m_1+3m_2 & 2m_1+6m_2 \\ m_3+3m_4 & 2m_3+6m_4\end{array} \right]=\left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]
Then [tex]m_1 = -3m_2[/tex], [tex]m_3 = -3m_4[/tex] and
[tex]Ker(T)=\left[ \begin{array}{cccc} -3 & 1 \\ -3 & 1\end{array} \right]\neq \left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]
Therefore, the transformation T(M) is linear, but is not an isomorphism.
So I guess my question is, have I done this correctly? Thanks for any help.