I think I've solved this problem, but the examples in my textbook are not giving me any indication as to whether my reasoning is sound.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Is the transformation

[tex]T(M) = M\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex]

from [tex]\mathbb{R}[/tex]^{2x2}to [tex]\mathbb{R}[/tex]^{2x2}linear? If it is, determine whether it is an isomorphism.

2. Relevant equations

T(f + g) = T(f) + T(g)

T (kf) = k T(f)

T^{-1}(T(M)) =M

3. The attempt at a solution

T(M_{1}+M_{2}) = T(M_{1}) + T(M_{2})

T(kM) = k T(M

Therefore, T(M) is a linear transformation.

[tex]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right][/tex] is not invertible, so T is an isomorphism if Ker(T) = 0.

[tex]\left[ \begin{array}{cccc} m_1 & m_2 \\ m_3 & m_4\end{array} \right]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]=\left[ \begin{array}{cccc} m_1+3m_2 & 2m_1+6m_2 \\ m_3+3m_4 & 2m_3+6m_4\end{array} \right]=\left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]

Then [tex]m_1 = -3m_2[/tex], [tex]m_3 = -3m_4[/tex] and

[tex]Ker(T)=\left[ \begin{array}{cccc} -3 & 1 \\ -3 & 1\end{array} \right]\neq \left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right][/tex]

Therefore, the transformation T(M) is linear, but is not an isomorphism.

So I guess my question is, have I done this correctly? Thanks for any help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Linear Transformation Isomorphism

**Physics Forums | Science Articles, Homework Help, Discussion**