mheslep
Gold Member
- 362
- 719
PWR typical burnup is around 50 GWdays/ton, or 5% of the fuel. Up to 500 GWdays/ton is expected in an experimental reactor, says the wiki. LFTR supposedly will have very high burnup, so optimistically assume 500 GWdays/ton, or ~120GWdays per 1000 moles of U, or given a 33% efficient reactor, 40GWe-days/1000 moles, or ~11GWe-years/1e5 moles U.mesa said:...
With this data we can simply calculate the accumulation of this element of the course of say a 30 year life cycle based off of anticipated (MWt energy of a reactor)/(energy per fission)*time for a rough estimate.
...
So for every 11 years of operation, and again following the fission products curve, a 1GWe reactor produces 7e3 moles of Zr, 6e3 moles of Cs, etc, for the high probability products. Or, all products with amu's from 82 to 105, and 127 to 150 would accumulate 5e2 moles, or higher, in 11 years. Those concentrations will change through decay or neutron capture.
The consequence of the result would depend on chemistry of the particular element in contact with the alloy which is beyond me.
Last edited: