Logarithmic Integral Calc: $$\int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integral Logarithmic
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the integral $$\int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$. Participants explore various methods for evaluating this integral, including substitutions and integration by parts, while also discussing related mathematical concepts.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant suggests substituting $$x=\sin \theta$$ to transform the integral into $$I = \int_{0}^{\frac{\pi}{2}}\ln\left(1+\sin \theta \right)\cdot \cos \theta d\theta$$.
  • Another participant proposes that the integral can also be expressed as $$I=\int_{0}^{\frac{\pi}{2}}\ln\left(1+\cos(\theta)\right)\cdot \cos(\theta)\,d\theta$$ and suggests using integration by parts (IBP) for further evaluation.
  • A later reply elaborates on the integration by parts approach, providing the steps to evaluate the integral after applying the technique.
  • One participant introduces a transformation involving the arsech function, breaking down the logarithmic expression into components, but does not provide a direct resolution to the integral.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for evaluating the integral, and multiple approaches are presented without agreement on which is superior or correct.

Contextual Notes

Some participants note the potential for using integral tables, but the discussion remains focused on the derivation and manipulation of the integral without resolving the final evaluation.

juantheron
Messages
243
Reaction score
1
Calculation of $$\int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$

I Have tried like this way:: Let $$I = \int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$ Put $x=\sin \theta\;,$ Then $dx = \cos \theta d\theta$

and changing limits, we get $$I = \int_{0}^{\frac{\pi}{2}}\ln\left(1+\sin \theta \right)\cdot \cos \theta d\theta$$

Now How can I solve after that,

Thanks
 
Physics news on Phys.org
You would actually have:

$$I=\int_{0}^{\frac{\pi}{2}}\ln\left(1+\cos(\theta)\right)\cdot \cos(\theta)\,d\theta$$

At this point I would try IBP, where:

$$u=\ln(1+\cos(\theta))\,\therefore\,du=-\frac{\sin(\theta)}{1+\cos(\theta)}\,d\theta$$

$$dv=\cos(\theta)\,d\theta\,\therefore\,v=\sin(\theta)$$
 
jacks said:
Calculation of $$\int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$

I Have tried like this way:: Let $$I = \int_{0}^{1}\ln\left(1+\sqrt{1-x^2}\right)dx$$ Put $x=\sin \theta\;,$ Then $dx = \cos \theta d\theta$

and changing limits, we get $$I = \int_{0}^{\frac{\pi}{2}}\ln\left(1+\sin \theta \right)\cdot \cos \theta d\theta$$

Now How can I solve after that,

Thanks

We should note that $\displaystyle \begin{align*} \textrm{arsech}\,{(x)} \equiv \ln{\left( \frac{1}{x} + \sqrt{ \frac{1}{x^2} - 1 } \right) } \textrm{ for } 0 < x \leq 1 \end{align*}$, so

$\displaystyle \begin{align*} \ln{ \left( 1 + \sqrt{ 1 - x^2 } \right) } &= \ln{ \left[ \frac{x\,\left( 1 + \sqrt{ 1 - x^2 } \right)}{x} \right] } \\ &= \ln{ \left[ x\,\left( \frac{1}{x} + \frac{\sqrt{1 - x^2}}{\sqrt{x^2}} \right) \right] } \\ &= \ln{ \left[ x\,\left( \frac{1}{x} + \sqrt{ \frac{1 - x^2}{x^2} } \right) \right] } \\ &= \ln{ \left[ x \, \left( \frac{1}{x} + \sqrt{ \frac{1}{x^2} - 1 } \right) \right] } \\ &= \ln{(x)} + \ln{ \left( \frac{1}{x} + \sqrt{ \frac{1}{x^2} - 1 } \right) } \\ &= \ln{(x)} + \textrm{arsech}\,(x) \end{align*}$

You should be able to look these integrals up in your tables :)
 
MarkFL said:
You would actually have:

$$I=\int_{0}^{\frac{\pi}{2}}\ln\left(1+\cos(\theta)\right)\cdot \cos(\theta)\,d\theta$$

At this point I would try IBP, where:

$$u=\ln(1+\cos(\theta))\,\therefore\,du=-\frac{\sin(\theta)}{1+\cos(\theta)}\,d\theta$$

$$dv=\cos(\theta)\,d\theta\,\therefore\,v=\sin(\theta)$$

Just to follow up after 24 hours...using my suggestion for continuing, we now have:

$$I=\left.\sin(\theta)\ln(1+\cos(\theta))\right|_0^{\frac{\pi}{2}}+\int_0^{\frac{\pi}{2}}\frac{\sin^2(\theta)}{1+\cos(\theta)}\,d\theta$$

Using $$\frac{\sin^2(\theta)}{1+\cos(\theta)}=\frac{1-\cos^2(\theta)}{1+\cos(\theta)}=1-\cos(\theta)$$ we have:

$$I=0+\int_0^{\frac{\pi}{2}}1-\cos(\theta)\,d\theta$$

$$I=\left.\theta-\sin(\theta)\right|_0^{\frac{\pi}{2}}=\left(\frac{\pi}{2}-1\right)-(0-0)=\frac{\pi}{2}-1$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K