Loop integral computation

metricspace
Messages
2
Reaction score
0
Homework Statement
Ok
Relevant Equations
Ok
I am trying to compute the following loop integral:
$$
\require{cancel}
\displaystyle
\begin{align}
I= \int \frac{d^4k}{(2\pi)^4}\bar u(p')\frac{[k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}]}{[k^2-M^2+i\epsilon][(k-p)^2-m^2+i\epsilon][(k-p')^2-m^2+i\epsilon]}u(p),
\end{align}
$$
with 2 different methods.
First Method: Rewrite the numerator and cancel the denominator. The numerator is
$$
\begin{align}
N^\mu &= k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}
\nonumber \\
&= k^2k^\mu - \frac{1}{2}(k^2-[(k-p)^2-m^2])k_\nu \gamma^\nu\gamma^\mu -\frac{1}{2}(k^2-[(k-p')^2-m^2])k_\nu\gamma^\mu\gamma^\nu
\nonumber \\
&= \frac{1}{2}[(k-p)^2-m^2]k_\nu \gamma^\nu\gamma^\mu +\frac{1}{2}[(k-p')^2-m^2]k_\nu\gamma^\mu\gamma^\nu.
\end{align}
$$
Thus,
$$
\begin{align}
\require{cancel}
\displaystyle
I =& \frac{1}{2}\int\frac{d^4k}{(2\pi)^4}\bar u(p') \frac{1}{[k^2-M^2+i\epsilon]} \left( \frac{k_\nu}{[(k-p')^2-m^2+i\epsilon]}\gamma^\nu\gamma^\mu + \frac{k_\nu}{[(k-p)^2-m^2+i\epsilon]}\gamma^\mu\gamma^\nu \right) u(p)
\nonumber \\
&= \frac{1}{2}A\bar u(p')(p'_\nu\gamma^\nu\gamma^\mu + p_\nu\gamma^\mu\gamma^\nu) u(p)
\nonumber \\
&= Am \bar u(p') \gamma^\mu u(p),
\end{align}
$$
where ##A## is a scalar.
Second Method: Feynman Parametrization. The denominator becomes:
$$
\require{cancel}
\displaystyle
\begin{align}
[k^2-M^2+i\epsilon]^{-1}[(k-p)^2-m^2+i\epsilon]^{-1}[(k-p')^2-m^2+i\epsilon]^{-1}=
\int_0^1dx\int_0^{1-x}dy \frac{2}{[l^2-\Delta^2+i\epsilon]^3},
\end{align}
$$
where ##l^\mu=(k-xp-yp')^\mu##, ##\Delta^2=(x+y)^2m^2+(1-x-y)M^2-xyq^2##, and, ##q^\mu=(p'-p)^\mu##.
Next, we perform the shift in the numerator:
$$
\begin{align}
N^\mu = k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k} = A_1 \bar u(p') \gamma^\mu u(p) + A_2 \bar u(p') \frac{i\sigma^{\mu\nu}q_\nu}{2m} u(p),
\end{align}
$$
where ##A_1## and ##A_2## are scalars. This method clearly gives a different result.
The first method gives the correct result (the result should not contain a ##i\sigma^{\mu\nu}q_\nu/2m## term), so the problem must be related with the Feynman Parametrization somehow.
The denominator ##[(k-p)^2-m^2+i\epsilon]=[k^2-2(k\cdot p)+i\epsilon]## (and the other one with ##p'##) could be problematic when ##k\to 0##, however there are other terms in the numerator (which I did not included here) that give the correct result with the same denominator and using Feynman Parametrization, i.e., using the second method. On the other hand these same terms (which give the correct result) are UV finite but the one in question is not. Is the problem in the IR or UV or both?
I believe I didn't make any mistakes on the passages, so what am I missing?
 
Physics news on Phys.org
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
 
mad mathematician said:
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
where exactly?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top