Loop integral computation

Click For Summary
SUMMARY

The forum discussion centers on the computation of a loop integral using two methods: direct manipulation of the integral and Feynman Parametrization. The first method yields the correct result, while the second introduces an unwanted term involving ##i\sigma^{\mu\nu}q_\nu/2m##. The user suspects the issue may stem from the Feynman Parametrization approach, particularly regarding the behavior of the denominator as ##k \to 0##. The discussion references Srednicki's textbook for further clarification on the calculation.

PREREQUISITES
  • Understanding of loop integrals in quantum field theory
  • Familiarity with Feynman Parametrization techniques
  • Knowledge of gamma matrices and their properties
  • Basic concepts of ultraviolet (UV) and infrared (IR) divergences
NEXT STEPS
  • Review Srednicki's "Quantum Field Theory" for explicit calculations of loop integrals
  • Study the derivation and application of Feynman Parametrization in quantum field theory
  • Examine the properties of gamma matrices and their role in loop integrals
  • Investigate techniques for handling UV and IR divergences in quantum field calculations
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, computational physicists, and students seeking to deepen their understanding of loop integrals and Feynman techniques.

metricspace
Messages
2
Reaction score
0
Homework Statement
Ok
Relevant Equations
Ok
I am trying to compute the following loop integral:
$$
\require{cancel}
\displaystyle
\begin{align}
I= \int \frac{d^4k}{(2\pi)^4}\bar u(p')\frac{[k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}]}{[k^2-M^2+i\epsilon][(k-p)^2-m^2+i\epsilon][(k-p')^2-m^2+i\epsilon]}u(p),
\end{align}
$$
with 2 different methods.
First Method: Rewrite the numerator and cancel the denominator. The numerator is
$$
\begin{align}
N^\mu &= k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}
\nonumber \\
&= k^2k^\mu - \frac{1}{2}(k^2-[(k-p)^2-m^2])k_\nu \gamma^\nu\gamma^\mu -\frac{1}{2}(k^2-[(k-p')^2-m^2])k_\nu\gamma^\mu\gamma^\nu
\nonumber \\
&= \frac{1}{2}[(k-p)^2-m^2]k_\nu \gamma^\nu\gamma^\mu +\frac{1}{2}[(k-p')^2-m^2]k_\nu\gamma^\mu\gamma^\nu.
\end{align}
$$
Thus,
$$
\begin{align}
\require{cancel}
\displaystyle
I =& \frac{1}{2}\int\frac{d^4k}{(2\pi)^4}\bar u(p') \frac{1}{[k^2-M^2+i\epsilon]} \left( \frac{k_\nu}{[(k-p')^2-m^2+i\epsilon]}\gamma^\nu\gamma^\mu + \frac{k_\nu}{[(k-p)^2-m^2+i\epsilon]}\gamma^\mu\gamma^\nu \right) u(p)
\nonumber \\
&= \frac{1}{2}A\bar u(p')(p'_\nu\gamma^\nu\gamma^\mu + p_\nu\gamma^\mu\gamma^\nu) u(p)
\nonumber \\
&= Am \bar u(p') \gamma^\mu u(p),
\end{align}
$$
where ##A## is a scalar.
Second Method: Feynman Parametrization. The denominator becomes:
$$
\require{cancel}
\displaystyle
\begin{align}
[k^2-M^2+i\epsilon]^{-1}[(k-p)^2-m^2+i\epsilon]^{-1}[(k-p')^2-m^2+i\epsilon]^{-1}=
\int_0^1dx\int_0^{1-x}dy \frac{2}{[l^2-\Delta^2+i\epsilon]^3},
\end{align}
$$
where ##l^\mu=(k-xp-yp')^\mu##, ##\Delta^2=(x+y)^2m^2+(1-x-y)M^2-xyq^2##, and, ##q^\mu=(p'-p)^\mu##.
Next, we perform the shift in the numerator:
$$
\begin{align}
N^\mu = k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k} = A_1 \bar u(p') \gamma^\mu u(p) + A_2 \bar u(p') \frac{i\sigma^{\mu\nu}q_\nu}{2m} u(p),
\end{align}
$$
where ##A_1## and ##A_2## are scalars. This method clearly gives a different result.
The first method gives the correct result (the result should not contain a ##i\sigma^{\mu\nu}q_\nu/2m## term), so the problem must be related with the Feynman Parametrization somehow.
The denominator ##[(k-p)^2-m^2+i\epsilon]=[k^2-2(k\cdot p)+i\epsilon]## (and the other one with ##p'##) could be problematic when ##k\to 0##, however there are other terms in the numerator (which I did not included here) that give the correct result with the same denominator and using Feynman Parametrization, i.e., using the second method. On the other hand these same terms (which give the correct result) are UV finite but the one in question is not. Is the problem in the IR or UV or both?
I believe I didn't make any mistakes on the passages, so what am I missing?
 
Physics news on Phys.org
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
 
mad mathematician said:
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
where exactly?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K