JDoolin
Gold Member
- 723
- 9
Fredrik:
Fredrik
My clumsy vocabulary. I meant Einstein Notation for gradient.
\nabla u = \begin{pmatrix}<br /> \frac{1}{h_1} \frac{\partial }{\partial x_1}\\ <br /> \frac{1}{h_2} \frac{\partial }{\partial x_2}\\<br /> \frac{1}{h_3} \frac{\partial }{\partial x_3}<br /> \end{pmatrix}u
I'll try to work it out in more detail in the other thread.
Edit: Actually, I can put the gist of the question here.
\frac{\partial x^\mu}{\partial x'^\nu}\cdot \frac{\partial }{\partial x^\mu} \overset ? = \begin{pmatrix} \frac{\partial ||\vec r||}{\partial ||\vec r`||} \frac{\partial }{\partial r}\\ \frac{\partial ||\vec r||}{\partial ||\vec \theta`||} \frac{\partial }{\partial \theta}\\ \frac{\partial ||\vec r||}{\partial ||\vec \phi`||} \frac{\partial }{\partial \phi} \end{pmatrix} =\begin{pmatrix} \frac{\partial }{\partial r}\\ \frac{1}{r} \frac{\partial }{\partial \theta}\\ \frac{1}{r sin\theta} \frac{\partial }{\partial \phi} \end{pmatrix}
No, the first equality implies the second: \frac{\partial}{\partial x'^\nu} = \frac{\partial x^\mu}{\partial x'^\nu} \frac{\partial}{\partial x^\mu}=(\Lambda^{-1})^\mu{}_\nu\frac{\partial}{\partial x^\mu}=\Lambda_\nu{}^\mu\frac{\partial}{\partial x^\mu}
JDoolin:Ahh, I think that is the Einstein Notation for [STRIKE]divergence[/STRIKE] that I was looking for.
https://www.physicsforums.com/showthread.php?t=511811 Post #8
https://www.physicsforums.com/showthread.php?t=511811 Post #8
Fredrik
I'd go with what Mentz told you in #2.
My clumsy vocabulary. I meant Einstein Notation for gradient.
\nabla u = \begin{pmatrix}<br /> \frac{1}{h_1} \frac{\partial }{\partial x_1}\\ <br /> \frac{1}{h_2} \frac{\partial }{\partial x_2}\\<br /> \frac{1}{h_3} \frac{\partial }{\partial x_3}<br /> \end{pmatrix}u
I'll try to work it out in more detail in the other thread.
Edit: Actually, I can put the gist of the question here.
\frac{\partial x^\mu}{\partial x'^\nu}\cdot \frac{\partial }{\partial x^\mu} \overset ? = \begin{pmatrix} \frac{\partial ||\vec r||}{\partial ||\vec r`||} \frac{\partial }{\partial r}\\ \frac{\partial ||\vec r||}{\partial ||\vec \theta`||} \frac{\partial }{\partial \theta}\\ \frac{\partial ||\vec r||}{\partial ||\vec \phi`||} \frac{\partial }{\partial \phi} \end{pmatrix} =\begin{pmatrix} \frac{\partial }{\partial r}\\ \frac{1}{r} \frac{\partial }{\partial \theta}\\ \frac{1}{r sin\theta} \frac{\partial }{\partial \phi} \end{pmatrix}
Last edited: