Lorentz invariant phase space and cross section

Click For Summary
SUMMARY

This discussion focuses on the derivation of the integral in Equation 5.27 from Equation 5.26 in the context of Lorentz invariant phase space and cross sections in quantum field theory (QFT). The transformation involves integrating over the three-dimensional momentum vector using spherical coordinates, where the solid angle appears due to the representation of three-dimensional vectors. The final result is achieved by integrating out the energy-conserving delta function and substituting the variables appropriately, leading to the expression for the Lorentz invariant phase space element, denoted as dΠLIPS.

PREREQUISITES
  • Understanding of Lorentz invariant phase space in QFT
  • Familiarity with spherical coordinates and their application in three-dimensional integrals
  • Knowledge of energy-momentum conservation principles
  • Proficiency in manipulating delta functions in integrals
NEXT STEPS
  • Study the derivation of Lorentz invariant phase space elements in QFT
  • Learn about the application of delta functions in energy-momentum conservation
  • Explore the mathematical techniques for transforming integrals into spherical coordinates
  • Investigate further examples of cross section calculations in particle physics
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, particle physicists, and students studying advanced topics in theoretical physics will benefit from this discussion.

simonjech
Gold Member
Messages
12
Reaction score
5
TL;DR
I did not understand one step in the QFT and Standard Model book from Matthew D. Schwartz.
Can someone please explain to me how can we obtain this integral in eq. 5.27 from eq. 5.26? I quite do not understand how is it possible to make this adjustment and why the (p_(f))^2 appeared there in the numerator and also why a solid angle appeared there suddenly.
Screenshot_20230227_221633_Drive.jpg
 
Physics news on Phys.org
What is p_f ? is it the modulus of p3 (and/or p4)? I suspect "f" means final here...

If that is the case, then the reason why there is a solid angle measure is because any three-dimensional vector can be represented in spherical coordinates as modulus and solid angle.
 
Last edited:
Yes, f means final. Can you please be more specific?
Screenshot_20230301_194521_Drive.jpg
 
The idea is to get rid of the "energy-momentum conserving" ##\delta##-distribution. To that end you first integrate over ##\vec{p}_4=-\vec{p}_f=\vec{p}_3##. This gives you (putting all the factors ##(2\pi)## and the factor 1/4 together and use ##E_{\text{CM}}=E_1+E_2##
$$\mathrm{d} \Pi_{\text{LIPS}}=\frac{1}{16 \pi^2} \delta(E_{\text{CM}}-E_3-E_4) \frac{\mathrm{d}^3 p_3}{E_3 E_4}.$$
Now you have to get rid of the energy-conserving ##\delta##-function. For this you note that
$$E_3^2=m_3^2+p_f^2, \quad E_4^2=m_4^2+p_f^2.$$
This means it's a good idea to introduce first spherical coordinates for the integration over ##\vec{p}_f##. The ##\delta## function can obviously be integrated out by the integral over ##p_f=|\vec{p}|_f##, and the final result is only to be integrated over the angles, which is denoted by the "solid angle", ##\mathrm{d} \Omega=\mathrm{d} \vartheta \mathrm{d} \varphi \sin \vartheta##, where ##\vartheta## and ##\varphi## are the usual spherical angular coordinates of ##\vec{p}_f##.

So finally end indeed up with Eq. (5.27) by using ##\mathrm{d}^3 p_f =\mathrm{d} p_f \mathrm{d} \Omega p_f^2## and then integrating over ##p_f## by substitution as explained in the next steps of the book.
 
  • Like
Likes   Reactions: PeroK and simonjech
Thank you for your respond. It was helpful to me.
vanhees71 said:
The idea is to get rid of the "energy-momentum conserving" ##\delta##-distribution. To that end you first integrate over ##\vec{p}_4=-\vec{p}_f=\vec{p}_3##. This gives you (putting all the factors ##(2\pi)## and the factor 1/4 together and use ##E_{\text{CM}}=E_1+E_2##
$$\mathrm{d} \Pi_{\text{LIPS}}=\frac{1}{16 \pi^2} \delta(E_{\text{CM}}-E_3-E_4) \frac{\mathrm{d}^3 p_3}{E_3 E_4}.$$
Now you have to get rid of the energy-conserving ##\delta##-function. For this you note that
$$E_3^2=m_3^2+p_f^2, \quad E_4^2=m_4^2+p_f^2.$$
This means it's a good idea to introduce first spherical coordinates for the integration over ##\vec{p}_f##. The ##\delta## function can obviously be integrated out by the integral over ##p_f=|\vec{p}|_f##, and the final result is only to be integrated over the angles, which is denoted by the "solid angle", ##\mathrm{d} \Omega=\mathrm{d} \vartheta \mathrm{d} \varphi \sin \vartheta##, where ##\vartheta## and ##\varphi## are the usual spherical angular coordinates of ##\vec{p}_f##.

So finally end indeed up with Eq. (5.27) by using ##\mathrm{d}^3 p_f =\mathrm{d} p_f \mathrm{d} \Omega p_f^2## and then integrating over ##p_f## by substitution as explained in the next steps of the book.
 

Similar threads

Replies
1
Views
771
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
712