I Lorentz invariant phase space and cross section

Click For Summary
The discussion focuses on deriving the integral in equation 5.27 from equation 5.26, particularly addressing the appearance of (p_f)^2 in the numerator and the introduction of solid angle. It clarifies that p_f represents the modulus of momentum in the final state, and the solid angle arises from representing three-dimensional vectors in spherical coordinates. The integration process involves eliminating the energy-conserving delta function by integrating over the momentum vectors, leading to a simplified expression. Ultimately, the integration over p_f and the angles results in the final form of equation 5.27, as outlined in the referenced material. This explanation aids in understanding the transformation and integration steps in quantum field theory calculations.
simonjech
Gold Member
Messages
12
Reaction score
5
TL;DR
I did not understand one step in the QFT and Standard Model book from Matthew D. Schwartz.
Can someone please explain to me how can we obtain this integral in eq. 5.27 from eq. 5.26? I quite do not understand how is it possible to make this adjustment and why the (p_(f))^2 appeared there in the numerator and also why a solid angle appeared there suddenly.
Screenshot_20230227_221633_Drive.jpg
 
Physics news on Phys.org
What is p_f ? is it the modulus of p3 (and/or p4)? I suspect "f" means final here...

If that is the case, then the reason why there is a solid angle measure is because any three-dimensional vector can be represented in spherical coordinates as modulus and solid angle.
 
Last edited:
Yes, f means final. Can you please be more specific?
Screenshot_20230301_194521_Drive.jpg
 
The idea is to get rid of the "energy-momentum conserving" ##\delta##-distribution. To that end you first integrate over ##\vec{p}_4=-\vec{p}_f=\vec{p}_3##. This gives you (putting all the factors ##(2\pi)## and the factor 1/4 together and use ##E_{\text{CM}}=E_1+E_2##
$$\mathrm{d} \Pi_{\text{LIPS}}=\frac{1}{16 \pi^2} \delta(E_{\text{CM}}-E_3-E_4) \frac{\mathrm{d}^3 p_3}{E_3 E_4}.$$
Now you have to get rid of the energy-conserving ##\delta##-function. For this you note that
$$E_3^2=m_3^2+p_f^2, \quad E_4^2=m_4^2+p_f^2.$$
This means it's a good idea to introduce first spherical coordinates for the integration over ##\vec{p}_f##. The ##\delta## function can obviously be integrated out by the integral over ##p_f=|\vec{p}|_f##, and the final result is only to be integrated over the angles, which is denoted by the "solid angle", ##\mathrm{d} \Omega=\mathrm{d} \vartheta \mathrm{d} \varphi \sin \vartheta##, where ##\vartheta## and ##\varphi## are the usual spherical angular coordinates of ##\vec{p}_f##.

So finally end indeed up with Eq. (5.27) by using ##\mathrm{d}^3 p_f =\mathrm{d} p_f \mathrm{d} \Omega p_f^2## and then integrating over ##p_f## by substitution as explained in the next steps of the book.
 
  • Like
Likes PeroK and simonjech
Thank you for your respond. It was helpful to me.
vanhees71 said:
The idea is to get rid of the "energy-momentum conserving" ##\delta##-distribution. To that end you first integrate over ##\vec{p}_4=-\vec{p}_f=\vec{p}_3##. This gives you (putting all the factors ##(2\pi)## and the factor 1/4 together and use ##E_{\text{CM}}=E_1+E_2##
$$\mathrm{d} \Pi_{\text{LIPS}}=\frac{1}{16 \pi^2} \delta(E_{\text{CM}}-E_3-E_4) \frac{\mathrm{d}^3 p_3}{E_3 E_4}.$$
Now you have to get rid of the energy-conserving ##\delta##-function. For this you note that
$$E_3^2=m_3^2+p_f^2, \quad E_4^2=m_4^2+p_f^2.$$
This means it's a good idea to introduce first spherical coordinates for the integration over ##\vec{p}_f##. The ##\delta## function can obviously be integrated out by the integral over ##p_f=|\vec{p}|_f##, and the final result is only to be integrated over the angles, which is denoted by the "solid angle", ##\mathrm{d} \Omega=\mathrm{d} \vartheta \mathrm{d} \varphi \sin \vartheta##, where ##\vartheta## and ##\varphi## are the usual spherical angular coordinates of ##\vec{p}_f##.

So finally end indeed up with Eq. (5.27) by using ##\mathrm{d}^3 p_f =\mathrm{d} p_f \mathrm{d} \Omega p_f^2## and then integrating over ##p_f## by substitution as explained in the next steps of the book.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...