I would urge you to start using four-vector notation. These questions do not arise there. I think what you are missing is that momentum here is 'relativistic', i.e. ##\vec{Force}=d\vec{p}/dt## where ##\vec{p}=\gamma {m} \dot{\vec{r}}##
Assuimng that vector potential is static one can write the equation of motion for a charged point particle (directly from least action):
##\frac{dp_\alpha}{d\tau}=-qu^{\mu}F_{\mu\alpha}##
Where ##p_\alpha## is the covariant four-momentum, ##\tau## is proper time, ##u^\mu## is four-velocity and ##F_{\mu\alpha}## is the electromagnetic tensor, and ##q## is charge. Now we go into 3-dimensions and focus on spatial components:
##d\tau \to dt/\gamma##
##p_{\alpha=1,2,3} \to -\vec{p}##
##u^{\mu} \to \gamma \left(c, \dot{\vec{r}}\right)^\mu ##
##F_{0i} \to \vec{E}/c##
##F_{ij} \to -\epsilon_{ijk}\left(\vec{B}\right)^k##
You thus get
##\frac{d\vec{p}}{dt}=q\left(\vec{E}+\dot{\vec{r}}\times\vec{B}\right)##
Since, by definition ##p_{\alpha}=m u_\alpha=m\gamma\left(c,\dot{\vec{r}}\right)_\alpha=(\dots,\vec{p})_\alpha##, we have ##\vec{p}=\gamma {m} \dot{\vec{r}}##