Lorentzian line profile of emitted radiation

Click For Summary
The discussion revolves around the derivation of the Lorentzian line profile of emitted radiation, starting from a model of the atom as a harmonic oscillator. The key point is the transition from a monochromatic to a frequency-distributed emission due to the damping of oscillations, which involves a Fourier transformation of the oscillation function. A participant raises a question about the origin of a factor of 1/2 in the integral, suggesting it should be 2 due to symmetry in the amplitude function. The conversation emphasizes the importance of considering the real part of the Fourier transform and clarifies the treatment of negative frequencies and time in the derivation. Overall, the discussion highlights the complexities involved in understanding the mathematical representation of emitted radiation.
MigMRF
Messages
15
Reaction score
0
Homework Statement
Explain the derivation of the lorentzian line profile. Use "Laser Spectroscopy 1" By Wolfgang Demtöder pp 76-78 as inspiration
Relevant Equations
Fourier transform, inverse fourier transform, solution to harmonic oscilator.
First of all i tried to follow the textbook. Here they start of by modelling the atom as an harmonic oscilator:
1672957326637.png

Then they find the solution as:
1672957502722.png

They neglect the second term as omega_0 >> gamma which also makes good sense so they end up with:
1672957579050.png

So far so good. After this they state the following:
"
Because the amplitude x.t/ of the oscillation decreases gradually, the frequency of
the emitted radiation is no longer monochromatic as it would be for an oscillation
with constant amplitude. Instead, it shows a frequency distribution related to the
function x(t) by a Fourier transformation-
The damped oscillation x(t) can be described as a superposition of monochromatic oscillations exp(i omega t) with slightly different frequencies omega and amplitudes A(omega).
1672957696728.png

I understand that a inverse fourier transform is going on here, so that we get away from the frequency domain. And the term 1/sqrt(2 pi) is the normalization constant, which also makes good sense. But where does the 1/2 factor come from? The integral goes from 0 to infinity, and as the amplitude is a symmetric function i would expect that we'd have to multiply by two when taking the integral over the half space, not divide.

It's been some hours of trying to figure out what is going on, but without any luck. Hope that some of you can help me out understanding this step in the derivation, as the rest of it seems pretty clear.
 
Physics news on Phys.org
## A(\omega)=\int x(t) e^{-i \omega t} dt ## apart from a numerical constant. I didn't do the integral just now, but I remember doing it a couple years ago, and I think it should work. Try for ## t>0 ##, because of the damping term.
Use ##\cos(\omega_o t)=(e^{i \omega_o t}+e^{-i \omega_o t})/2 ##.

Edit: and perhaps a minor detail, but it might be a necessary one: ## x(t) ## is real, so you may need to include the negative ## \omega's ##, (and perhaps even negative ## t's ## to get it to work). You might need to write the damping term (the exponent) with a plus sign for ## t<0 ##.
 
Last edited:
MigMRF said:
View attachment 319857
I understand that a inverse fourier transform is going on here, so that we get away from the frequency domain. And the term 1/sqrt(2 pi) is the normalization constant, which also makes good sense. But where does the 1/2 factor come from? The integral goes from 0 to infinity, and as the amplitude is a symmetric function i would expect that we'd have to multiply by two when taking the integral over the half space, not divide.
I agree that the factor of 1/2 should be a factor of 2. But I also think that it should be specified that the real part of the right-hand side should be taken.

From ##A(\omega) = \frac {1}{\sqrt{2\pi}} \int_{-\infty}^\infty{x(t)e^{-i\omega t}} dt## and the fact that ##x(t)## is real, we must have ##A^*(\omega) = A(-\omega)##. So,

$$x(t) = \frac {1}{\sqrt{2\pi}} \int_{-\infty}^\infty{A(\omega)e^{i\omega t}} d\omega $$
$$= \frac {1}{\sqrt{2\pi}} \left(\int_{-\infty}^0{A(\omega)e^{i\omega t}} d\omega + \int_{0}^{\infty}{A(\omega)e^{i\omega t}} d\omega \right)$$
$$= \frac {1}{\sqrt{2\pi}} \left(\int_{0}^{\infty}{A(-\omega)e^{-i\omega t}} d\omega + \int_{0}^{\infty}{A(\omega)e^{i\omega t}} d\omega \right)$$
$$= \frac {1}{\sqrt{2\pi}} \left(\int_{0}^{\infty}{A^*(\omega)e^{-i\omega t}} d\omega + \int_{0}^{\infty}{A(\omega)e^{i\omega t}} d\omega \right)$$
$$= \frac {1}{\sqrt{2\pi}} \left(\int_{0}^{\infty}{A(\omega)e^{i\omega t}} d\omega +CC \right)$$
$$= \frac {2}{\sqrt{2\pi}} Re\left[ \int_{0}^{\infty}{A(\omega)e^{i\omega t}} d\omega \right]$$
 
  • Like
Likes vanhees71 and Charles Link
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
17
Views
2K
Replies
4
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
935
Replies
1
Views
2K
Replies
3
Views
1K
Replies
2
Views
927
  • · Replies 2 ·
Replies
2
Views
3K
Replies
9
Views
2K
Replies
10
Views
2K