- #1

- 44

- 0

How i can see the right lorentz invariance in lqg?

- Thread starter luxxio
- Start date

- #1

- 44

- 0

How i can see the right lorentz invariance in lqg?

- #2

marcus

Science Advisor

Gold Member

Dearly Missed

- 24,738

- 785

This may help:How i can see the right lorentz invariance in lqg?

http://arxiv.org/abs/gr-qc/0205108

Carlo Rovelli, Simone Speziale

12 pages, 3 figures

(Submitted on 25 May 2002)

"A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer could see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts and give the conditions under which its action is unitary."

- #3

- 44

- 0

namely how is possible that so(1,3)~so(3)X Something.

thanks

- #4

- 10,948

- 3,662

- #5

- 145

- 0

Shouldn't this then lead one to the conclusion, that LQG is dead?

- #6

MTd2

Gold Member

- 2,028

- 25

1.length is a state that arises as a an observable that is bounded below by the plack scale.

2.lorentz invariance arises as an average of the observables at larger scale.

Thus, length is meaningless by itself, all that exists are observables in a "nothingness", which by interacting each other, make space time appears.

Demystifier is right in what he says, because in the nothingness, there is a kind of absolute QM tick tack, thus, time is a paramter in this case, not a dimension. Time as a dimension shows up as a kind of constrain between the observables.

- #7

- 2,425

- 6

Most importantly, LQG makes here a prediction, thus becomes testable and finally, deserves the status of a scientific theory !Shouldn't this then lead one to the conclusion, that LQG is dead?

- #8

- 478

- 0

What is the prediction for the scale of Lorentz violations?Most importantly, LQG makes here a prediction, thus becomes testable and finally, deserves the status of a scientific theory !

- #9

- 82

- 0

- #10

- 2,425

- 6

As far as I know, there is no agreement in the present state of the theory. On needs to construct specific low energy models. There has been some claims by Smolin and other enthusiastic people. I meant to emphasize that one should not conclude the theory is "dead" but on the contrary that it is one way it becomes "alive" !What is the prediction for the scale of Lorentz violations?

On Loop Quantum Gravity Phenomenology and the Issue of Lorentz Invariance

- #11

- 478

- 0

So, the testability of the theory is highly model dependent? That is, there may be a number of possibilities?As far as I know, there is no agreement in the present state of the theory. On needs to construct specific low energy models.

Is it possible that the Lorentz violating effects only occur at the Planck scale?

- #12

- 2,425

- 6

In the present state of development, yes, I think so.So, the testability of the theory is highly model dependent?

Yes, and in fact if I remember correctly, Rovelli in his book gives arguments why, beyond naive expectations, Lorentz invariance might even still hold down to the quantum of length.Is it possible that the Lorentz violating effects only occur at the Planck scale?

- #13

- 478

- 0

So, how is this different from string theory?In the present state of development, yes, I think so.

So, the predictions might only be testable in principle? Again, how is this different from string theory?Yes, and in fact if I remember correctly, Rovelli in his book gives arguments why, beyond naive expectations, Lorentz invariance might even still hold down to the quantum of length.

- #14

- 44

- 0

i would like remember that the quantum field theory is model dependent too. and then?

- #15

- 10,948

- 3,662

Then quantum field theory, or more precisely, the standard way of quantization of fields, is Lorentz invariant. Even quantum gravity can be quantized in this way, and then quantum gravity is Lorentz invariant too. However, this method of quantization of gravity has other problems (non-renormalizability, background dependence, ...), which is why one searches for other approaches, like LQG and string theory, which solve some problems but cause some new ones.i would like remember that the quantum field theory is model dependent too. and then?

- #16

- 2,425

- 6

I don't think this is different from string theory.So, how is this different from string theory?

- Replies
- 4

- Views
- 1K

- Replies
- 0

- Views
- 2K

- Replies
- 1

- Views
- 823

- Replies
- 9

- Views
- 7K

- Last Post

- Replies
- 6

- Views
- 2K

- Replies
- 0

- Views
- 2K

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 0

- Views
- 2K

- Replies
- 23

- Views
- 5K

- Last Post

- Replies
- 47

- Views
- 8K