timmdeeg said:
There is another issue with that new paper
Hubble Tension and Gravitational Self-Interaction which is unclear for me.
They mention the current values:
The discrepancy presently reaches a 5σ significance: the combined high-z measurements yield 67.28 ± 0.60 km/s/Mpc while the combined low-z measurements yield H0 = 73.04 ± 1.04 km/s/Mpc [8].
But they don't mention the values which according to their model match well without tension.
How to interpret this statement:
Finally, we verify that with the constrained parameters, the GR-SI fit reproduces better the CMB power spectrum with the low-z value of H0 than with the high-z H0 determination. We also find that if H0 is left a free parameter, its best fit value agrees with the low-z determination rather than the high-z one. This indicates an absence of Hubble tension in the GR-SI model.
Does this mean that their GR-SI fit yields the low-z value ~ 73 of the Hubble constant also for the early (high-z) universe? But they don't mention that explicitly somewhere.
Any ideas?
In their model they aren't really predicting a Hubble constant, which, of course, isn't a constant in their model anyway. They are using the Hubble constant measurements as inputs to fit their depletion function, rather than as outputs predicted from some other inputs.
Their depletion function, a bit like the proportions of ordinary matter, dark matter, and dark energy in LCDM, isn't something that one can determine with all parameters set with precision from first principles. It is a summary description of the way a big complex system of the structure of the universe at various points in time evolved that has some free parameters to match to observations. The evolution and impacts of their depletion function, however, once you fix the parameters, can be determined more precisely.
What they are saying is that you can adjust the parameters in their model such that it is consistent with both low-z and high-z values of the Hubble "constant" thereby alleviating the tension. Hence, from their perspective, you can use the Hubble constant measurement to calibrate their deletion function's free parameters.
we verify that with the constrained parameters, the GR-SI fit reproduces better the CMB power spectrum with the low-z value of H0 than with the high-z H0 determination
This is neither here nor there, since the Hubble constant isn't a constant in their model.
It is an observation which is a bit surprising. But no really big conclusions are drawn from it. It is just mentioned.
It is surprising because you would think that the high-z Hubble constant measurement ought to produce the best CMB fit since the CMB arises at high-z.
But, it doesn't necessarily mean much.
The determination of the high-z Hubble constant value in LCDM is an output that is derived (solely) from the input of the CMB fit. This Hubble constant determination from the CMB fit is model dependent. So, it isn't necessarily that crazy that in a different model, the CMB fit would imply a modestly different inferred Hubble constant value.
Comparing Hubble constant values in a GR-SI model isn't truly an apples to apples comparison with the Hubble constant in the LCDM model. The models assign different meaning to what observations of the Hubble constant at a particular point in time mean, even though the observational measurement at a point in time is the same. And, there is no way to directly measure the Hubble constant at the time of the CMB imprint apart from looking at the CMB to determine if the Hubble constant inferred in LCDM from the CMB fit is consistent with other ways of observing it in that era.