M has the unit matrix at the upper left side and zero everywhere else

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Unit Zero
Click For Summary

Discussion Overview

The discussion revolves around determining bases for vector spaces associated with a given matrix and understanding the implications of a specific matrix form. Participants explore the concepts of linear independence, null vectors, and the transformation represented by the matrix, focusing on both theoretical and practical aspects of linear algebra.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Participants discuss the interpretation of the matrix form that should have an identity matrix in the upper left and zeros elsewhere, questioning its implications for the matrix structure.
  • There is a suggestion to find bases $\mathcal{B}$ and $\mathcal{C}$ such that the transformation represented by the matrix meets the specified form.
  • Some participants propose that the vectors $b_i$ should be chosen as unit vectors, while others express uncertainty about how this choice affects the resulting vectors $c_i$.
  • Concerns are raised about ensuring the independence of the vectors $b_i$ and $c_i$, particularly in relation to the null vector condition for $b_5$.
  • Participants engage in a step-by-step reduction of the matrix to find the necessary conditions for the bases and check for linear independence among the resulting vectors.
  • A specific vector for $b_5$ is proposed, derived from the equations obtained during matrix reduction, and its independence from the other vectors is discussed.
  • Final bases for $\mathcal{B}$ and $\mathcal{C}$ are presented, with participants expressing agreement on their correctness.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the proposed bases at the end of the discussion, but there are multiple viewpoints on the interpretation of the matrix form and the selection of vectors throughout the conversation.

Contextual Notes

Participants acknowledge the need for linear independence among the chosen vectors and the conditions that must be satisfied for the transformation to hold, but the discussion does not resolve all uncertainties regarding the implications of the matrix structure.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $\lambda\in \mathbb{R}$ and \begin{equation*}a=\begin{pmatrix}1 & 2 &-1& \lambda & -\lambda \\ 0 & 1 & -1& \lambda & 2\\ 2 & 2 & 1 & 1 & 3\lambda-1 \\ 1 & 1 & 1 & \lambda & 5\end{pmatrix}\in \mathbb{R}^{4\times 5}\end{equation*}
(a) Let $\lambda=1$. Determine a Basis $\mathcal{B}$ of $\mathbb{R}^5$ and a Basis $\mathcal{C}$ of $\mathbb{R}^4$, such that $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero.

(b) Determine the rank of $a$ and $a^T$.
For question (a) :

With $\lambda=1$ we get the matrix \begin{equation*}a=\begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 5\end{pmatrix}\end{equation*}
Let $\mathcal{B}=\{b_1 , b_2, b_3, b_4, b_5\}$ and $\mathcal{C}=\{c_1 , c_2, c_3, c_4\}$.

It holds that \begin{equation*}\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)=\left (\gamma_{\mathcal{C}}(\phi_a(b_1))\mid \gamma_{\mathcal{C}}(\phi_a(b_2))\mid \gamma_{\mathcal{C}}(\phi_a(b_3)) \mid \gamma_{\mathcal{C}}(\phi_a(b_4)) \mid \gamma_{\mathcal{C}}(\phi_a(b_5))\right )\end{equation*}
It holds also that $\gamma_{\mathcal{C}}(\phi_a(b_i))=\begin{pmatrix}\alpha_1 \\ \alpha_2\\ \alpha_3\\ \alpha_4\end{pmatrix}$ with $\phi_a(b_i)=\alpha_1\cdot c_1+\alpha_2\cdot c_2+\alpha_3\cdot c_3+\alpha_4\cdot c_4$.

That $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero, does it mean it must be of the form \begin{equation*}a=\begin{pmatrix}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0& 0 & 0\\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{pmatrix}\end{equation*} ? Or what does this mean?:unsure:
 
Physics news on Phys.org
mathmari said:
That $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero, does it mean it must be of the form \begin{equation*}a=\begin{pmatrix}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0& 0 & 0\\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{pmatrix}\end{equation*} ? Or what does this mean?

Hey mathmari!

That's how I interpret it as well. (Nod)
 
Klaas van Aarsen said:
That's how I interpret it as well. (Nod)

But how can we find the desired basis? Could you give me a hint? :unsure:
 
mathmari said:
But how can we find the desired basis? Could you give me a hint?
We must have for $i=1,\ldots,4$ that $a b_i = c_i$, and additionally that $a b_5=0$.
Furthermore, the $b_i$ must be independent, and the $c_i$ must be independent as well.
Beyond that we are free to pick $b_i$ and $c_i$ however we want.

Suppose we pick the $b_i$ to be unit vectors?
What will we get for the $c_i$ then? 🤔
 
Last edited:
Klaas van Aarsen said:
We must have for $i=1,\ldots,4$ that $a b_i = c_i$, and additionally that $a b_5=0$.
Furthermore, the $b_i$ must be independent, and the $c_i$ must be independent as well.
Beyond that we are free to pick $b_i$ and $c_i$ however we want.

Suppose we pick the $b_i$ to be unit vectors?
What will we get for the $c_i$ then? 🤔

When we pick the $b_i$ (you mean for $i=1,2,3,4$, or not?) to be unit vectors we have \begin{equation*}c_1=ab_1=\begin{pmatrix}1 \\ 0 \\ 2 \\ 1\end{pmatrix}, \ c_2=ab_2=\begin{pmatrix}2 \\ 1 \\ 2 \\ 1\end{pmatrix}, \ c_3=ab_3=\begin{pmatrix}-1 \\ -1 \\ 1 \\ 1\end{pmatrix}, \ c_4=ab_4=\begin{pmatrix}1 \\ 1 \\ 1 \\ 1\end{pmatrix}\end{equation*} So we have to check if these are linearly independent, if not we have to use the vectors $b_i$, right?

The vector $b_5$ must be such that $a b_5=0$ and independent from $b_1, \ldots , b_4$ so it cannot be a unit vector, can it?

:unsure:
 
mathmari said:
So we have to check if these are linearly independent, if not we have to use the vectors $b_i$, right?

The vector $b_5$ must be such that $a b_5=0$ and independent from $b_1, \ldots , b_4$ so it cannot be a unit vector, can it?
I guess we will have to find a non-zero vector $b_5$ that maps to the null vector. 🤔
As long as the other 4 vectors are independent from each other and from $b_5$ they should be good to go. 🤔
 
Klaas van Aarsen said:
I guess we will have to find a non-zero vector $b_5$ that maps to the null vector. 🤔
As long as the other 4 vectors are independent from each other and from $b_5$ they should be good to go. 🤔

\begin{align*}\begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 5\end{pmatrix}& \ \overset{R_4:R_4-R_1}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 0 & -1 & -2 & 0 & 6\end{pmatrix}\\ & \ \overset{R_3:R_3-2\cdot R_1}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & -2 & 3 & -1 & 4 \\ 0 & -1 & -2 & 0 & 6\end{pmatrix} \\ & \ \overset{R_4:R_4+R_2}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & -2 & 3 & -1 & 4 \\ 0 & 0 & -3 & 1 & 8\end{pmatrix} \\ & \ \overset{R_3:R_3+2\cdot R_2}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & 0 & 1 & 1 & 8 \\ 0 & 0 & -3 & 1 & 8\end{pmatrix}\\ & \ \overset{R_4:R_4+3\cdot R_3}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & 0 & 1 & 1 & 8 \\ 0 & 0 & 0 & 4 & 32\end{pmatrix}\end{align*}
We get the equations \begin{align*}a+2b-c+d-e=&0 \\ b-c+d+2e =&0 \\ c+d+8e=&0 \\ 4d+32e=&0\end{align*}
Choosing for eample $e=1$ we get the vector $b_5=\begin{pmatrix}-3 \\ 6 \\ 0 \\ -8 \\ 1\end{pmatrix}$.

So the basis $B$ is $\left \{\begin{pmatrix}1\\ 0 \\ 0\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}0\\ 1 \\ 0\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}0\\ 0 \\ 1\\ 0\\ 0\end{pmatrix} , \ \begin{pmatrix}0\\ 0 \\ 0\\ 1\\ 0\end{pmatrix}, \ \begin{pmatrix}-3 \\ 6 \\ 0 \\ -8 \\ 1\end{pmatrix}\right \}$.

And the basis $C$ is $\left \{\begin{pmatrix}1 \\ 0 \\ 2 \\ 1\end{pmatrix}, \ \begin{pmatrix}2 \\ 1 \\ 2 \\ 1\end{pmatrix}, \ \begin{pmatrix}-1 \\ -1 \\ 1 \\ 1\end{pmatrix}, \ \begin{pmatrix}1 \\ 1 \\ 1 \\ 1\end{pmatrix}\right \}$, i.e. the columns of the matrix $a$, which are linearly independent as at the row echelon form there is no zero-row.

Is that correct? :unsure:
 
Looks correct to me. (Nod)
 
Klaas van Aarsen said:
Looks correct to me. (Nod)

Great! Thank you! (Sun)
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K