M has the unit matrix at the upper left side and zero everywhere else

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Unit Zero
Click For Summary
SUMMARY

The discussion centers on determining bases for vector spaces associated with the matrix \( a \) when \( \lambda = 1 \). The matrix is given as \( a = \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 5\end{pmatrix} \). Participants confirm that the bases \( \mathcal{B} \) and \( \mathcal{C} \) can be constructed with specific vectors, ensuring linear independence. The rank of the matrix \( a \) and its transpose \( a^T \) is also discussed, leading to the conclusion that both have a rank of 4, indicating a full row rank.

PREREQUISITES
  • Understanding of linear algebra concepts such as basis, rank, and linear independence.
  • Familiarity with matrix operations and transformations.
  • Knowledge of vector spaces and their properties.
  • Ability to perform row reduction to echelon form.
NEXT STEPS
  • Study the concept of vector space dimension and its implications on basis selection.
  • Learn about the properties of the rank-nullity theorem in linear algebra.
  • Explore the process of finding the row echelon form of matrices.
  • Investigate the relationship between a matrix and its transpose in terms of rank and linear transformations.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, as well as educators teaching these concepts. This discussion is beneficial for anyone looking to deepen their understanding of vector spaces and matrix theory.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $\lambda\in \mathbb{R}$ and \begin{equation*}a=\begin{pmatrix}1 & 2 &-1& \lambda & -\lambda \\ 0 & 1 & -1& \lambda & 2\\ 2 & 2 & 1 & 1 & 3\lambda-1 \\ 1 & 1 & 1 & \lambda & 5\end{pmatrix}\in \mathbb{R}^{4\times 5}\end{equation*}
(a) Let $\lambda=1$. Determine a Basis $\mathcal{B}$ of $\mathbb{R}^5$ and a Basis $\mathcal{C}$ of $\mathbb{R}^4$, such that $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero.

(b) Determine the rank of $a$ and $a^T$.
For question (a) :

With $\lambda=1$ we get the matrix \begin{equation*}a=\begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 5\end{pmatrix}\end{equation*}
Let $\mathcal{B}=\{b_1 , b_2, b_3, b_4, b_5\}$ and $\mathcal{C}=\{c_1 , c_2, c_3, c_4\}$.

It holds that \begin{equation*}\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)=\left (\gamma_{\mathcal{C}}(\phi_a(b_1))\mid \gamma_{\mathcal{C}}(\phi_a(b_2))\mid \gamma_{\mathcal{C}}(\phi_a(b_3)) \mid \gamma_{\mathcal{C}}(\phi_a(b_4)) \mid \gamma_{\mathcal{C}}(\phi_a(b_5))\right )\end{equation*}
It holds also that $\gamma_{\mathcal{C}}(\phi_a(b_i))=\begin{pmatrix}\alpha_1 \\ \alpha_2\\ \alpha_3\\ \alpha_4\end{pmatrix}$ with $\phi_a(b_i)=\alpha_1\cdot c_1+\alpha_2\cdot c_2+\alpha_3\cdot c_3+\alpha_4\cdot c_4$.

That $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero, does it mean it must be of the form \begin{equation*}a=\begin{pmatrix}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0& 0 & 0\\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{pmatrix}\end{equation*} ? Or what does this mean?:unsure:
 
Physics news on Phys.org
mathmari said:
That $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\phi_a)$ at the upper left side there is an unit matrix and elsewise zero, does it mean it must be of the form \begin{equation*}a=\begin{pmatrix}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0& 0 & 0\\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{pmatrix}\end{equation*} ? Or what does this mean?

Hey mathmari!

That's how I interpret it as well. (Nod)
 
Klaas van Aarsen said:
That's how I interpret it as well. (Nod)

But how can we find the desired basis? Could you give me a hint? :unsure:
 
mathmari said:
But how can we find the desired basis? Could you give me a hint?
We must have for $i=1,\ldots,4$ that $a b_i = c_i$, and additionally that $a b_5=0$.
Furthermore, the $b_i$ must be independent, and the $c_i$ must be independent as well.
Beyond that we are free to pick $b_i$ and $c_i$ however we want.

Suppose we pick the $b_i$ to be unit vectors?
What will we get for the $c_i$ then? 🤔
 
Last edited:
Klaas van Aarsen said:
We must have for $i=1,\ldots,4$ that $a b_i = c_i$, and additionally that $a b_5=0$.
Furthermore, the $b_i$ must be independent, and the $c_i$ must be independent as well.
Beyond that we are free to pick $b_i$ and $c_i$ however we want.

Suppose we pick the $b_i$ to be unit vectors?
What will we get for the $c_i$ then? 🤔

When we pick the $b_i$ (you mean for $i=1,2,3,4$, or not?) to be unit vectors we have \begin{equation*}c_1=ab_1=\begin{pmatrix}1 \\ 0 \\ 2 \\ 1\end{pmatrix}, \ c_2=ab_2=\begin{pmatrix}2 \\ 1 \\ 2 \\ 1\end{pmatrix}, \ c_3=ab_3=\begin{pmatrix}-1 \\ -1 \\ 1 \\ 1\end{pmatrix}, \ c_4=ab_4=\begin{pmatrix}1 \\ 1 \\ 1 \\ 1\end{pmatrix}\end{equation*} So we have to check if these are linearly independent, if not we have to use the vectors $b_i$, right?

The vector $b_5$ must be such that $a b_5=0$ and independent from $b_1, \ldots , b_4$ so it cannot be a unit vector, can it?

:unsure:
 
mathmari said:
So we have to check if these are linearly independent, if not we have to use the vectors $b_i$, right?

The vector $b_5$ must be such that $a b_5=0$ and independent from $b_1, \ldots , b_4$ so it cannot be a unit vector, can it?
I guess we will have to find a non-zero vector $b_5$ that maps to the null vector. 🤔
As long as the other 4 vectors are independent from each other and from $b_5$ they should be good to go. 🤔
 
Klaas van Aarsen said:
I guess we will have to find a non-zero vector $b_5$ that maps to the null vector. 🤔
As long as the other 4 vectors are independent from each other and from $b_5$ they should be good to go. 🤔

\begin{align*}\begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 5\end{pmatrix}& \ \overset{R_4:R_4-R_1}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 2 & 2 & 1 & 1 & 2 \\ 0 & -1 & -2 & 0 & 6\end{pmatrix}\\ & \ \overset{R_3:R_3-2\cdot R_1}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & -2 & 3 & -1 & 4 \\ 0 & -1 & -2 & 0 & 6\end{pmatrix} \\ & \ \overset{R_4:R_4+R_2}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & -2 & 3 & -1 & 4 \\ 0 & 0 & -3 & 1 & 8\end{pmatrix} \\ & \ \overset{R_3:R_3+2\cdot R_2}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & 0 & 1 & 1 & 8 \\ 0 & 0 & -3 & 1 & 8\end{pmatrix}\\ & \ \overset{R_4:R_4+3\cdot R_3}{\longrightarrow } \ \begin{pmatrix}1 & 2 &-1& 1 & -1 \\ 0 & 1 & -1& 1 & 2\\ 0 & 0 & 1 & 1 & 8 \\ 0 & 0 & 0 & 4 & 32\end{pmatrix}\end{align*}
We get the equations \begin{align*}a+2b-c+d-e=&0 \\ b-c+d+2e =&0 \\ c+d+8e=&0 \\ 4d+32e=&0\end{align*}
Choosing for eample $e=1$ we get the vector $b_5=\begin{pmatrix}-3 \\ 6 \\ 0 \\ -8 \\ 1\end{pmatrix}$.

So the basis $B$ is $\left \{\begin{pmatrix}1\\ 0 \\ 0\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}0\\ 1 \\ 0\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}0\\ 0 \\ 1\\ 0\\ 0\end{pmatrix} , \ \begin{pmatrix}0\\ 0 \\ 0\\ 1\\ 0\end{pmatrix}, \ \begin{pmatrix}-3 \\ 6 \\ 0 \\ -8 \\ 1\end{pmatrix}\right \}$.

And the basis $C$ is $\left \{\begin{pmatrix}1 \\ 0 \\ 2 \\ 1\end{pmatrix}, \ \begin{pmatrix}2 \\ 1 \\ 2 \\ 1\end{pmatrix}, \ \begin{pmatrix}-1 \\ -1 \\ 1 \\ 1\end{pmatrix}, \ \begin{pmatrix}1 \\ 1 \\ 1 \\ 1\end{pmatrix}\right \}$, i.e. the columns of the matrix $a$, which are linearly independent as at the row echelon form there is no zero-row.

Is that correct? :unsure:
 
Looks correct to me. (Nod)
 
Klaas van Aarsen said:
Looks correct to me. (Nod)

Great! Thank you! (Sun)
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K