Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mach's Principle in Particle Physics

  1. Jul 21, 2011 #1
    Is there a version of Mach's Principle in Particle Physics? If yes, does it hold true?
    A version could possibly look as follows: certain properties of a particle can be attributed entirely to the existence of other particles ( for instance, can the charge of a particle be attributed to the existence of its antiparticle?).
  2. jcsd
  3. Jul 21, 2011 #2
    well if a particle has an antiparticle that is not itself then it is described by some kind of complex field (i think?) then writing down a real Lagrangian will force you to introduce a U(1) symmetry (i think) which means that it you should probably couple it to the EM field since that is what always happens in the standard model. so yes if a particle is not its own antiparticle it will naturally couple to the EM field. Note however that this doesn't tell you the value of its charge, only that it should be charged.
  4. Jul 21, 2011 #3


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    IMO there isn't a version of Mach's principle that is true for gravity, so I'm not sure it makes sense to imagine expanding something that's not true for gravity into something that would be true for the standard model.

    When I say it's not true for gravity, what I mean is that the best candidate anyone's found for a Machian theory of gravity is Brans-Dicke gravity with a small value of the constant omega. But B-D gravity with small omega is inconsistent with observation.
  5. Jul 22, 2011 #4
    I thought on similar lines. Although I'm aware that Mach's principle is not valid for gravity, I hope to find an analogue/modification of Mach's principle for the standard model.
    Also, are the properties of a particle (such as spin, charge &c.) entirely due to its interaction with other particles?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook