- #1
bobred
- 173
- 0
Homework Statement
Cylinder of radius [itex]a[/itex] and a cylindrical hole [itex]b < a[/itex] is displaced a distance [itex]d[/itex] in x-direction. Current density [itex]\textbf{J}=J_z\textbf{e}_z[/itex]. Show that a uniform magnetic field inside the hole is
[itex]\textbf{B}=\frac{\mu_0}{2}J_zd\textbf{e}_y[/itex]
Homework Equations
Using previous result of whole cylinder
[itex]\textbf{B}=\frac{\mu_0}{2}J_z(-y\textbf{e}_x + x\textbf{e}_y)[/itex]
and that the cylindrical hole can be modeled as a charge density of [itex]-J_z\textbf{e}_z[/itex].
The Attempt at a Solution
I tried superposition of fields so
[itex]\textbf{B}_1=\frac{\mu_0}{2}J_z(-y\textbf{e}_x + x\textbf{e}_y)[/itex]
[itex]\textbf{B}_2=-\frac{\mu_0}{2}J_z(-y\textbf{e}_x + (x + d)\textbf{e}_y)[/itex]
[itex]\textbf{B}= \textbf{B}_1 + \textbf{B}_2[/itex] to which I get
[itex]\textbf{B}=-\frac{\mu_0}{2}J_zd\textbf{e}_y[/itex]
Any ideas, is this the right approach?