Undergrad Magnetic Field Intensity At the Inductor's Air Gap (+Fringing Flux)

Click For Summary
The discussion focuses on the impact of an air gap in a transformer's core on magnetic field intensity and core saturation in switching power supply design. The participant shares their derivation and references a paper by Roshen, noting a discrepancy in the scalar potential function related to the air gap term. They question why Roshen's equation lacks a variable present in their own derivation, suggesting it may be a typo. Additionally, there are inquiries about the clarity of their expansion and a lack of expertise in LaPlace expansions. The conversation highlights the complexities of magnetic field calculations in transformer design.
BlackMelon
Messages
43
Reaction score
7
Hi there!

Sorry for the unclear images in the previous post. This time I upload pdf files for my derivation and the reference paper.

So, when I design a switching power supply, usually I make an air gap at the transformer's core. This will alter the BH curve, preventing the core saturation. However, as I increase the gap's length, the fluxes fringes. So, the reluctance of the air gap is not high enough to alter the BH curve as I expected.

To solve the problem, I read a paper by Roshen (file Roshen2007.pdf) and derive formulae inside that paper (file Formulae Derivation... .pdf).
I got a mismatch of scalar potential function (equation II.6 in both files).

On the last page of my derivation, I got a term Hg*y/2.
On the second page of Roshen's paper, this term is Hg/lg

I would like to know why Roshen did not put the variable y on that term?

Best Regards,
BlackMelon
 

Attachments

Physics news on Phys.org
Looks to me like a typo in Roshen, but I couldn't follow the expansion completely.
 
Charles Link said:
Looks to me like a typo in Roshen, but I couldn't follow the expansion completely.

May I know which part of my expansion is confusing?
 
BlackMelon said:
May I know which part of my expansion is confusing?
I don't have much expertise at doing the LaPlace expansions, both the integer one, and the continuous one. I'm somewhat familiar with the Legendre type method of solution, and I think this one is similar to that, but I have little expertise with it.
 
Last edited:
Thread 'Colors in a plasma globe'
I have a common plasma globe with blue streamers and orange pads at both ends. The orange light is emitted by neon and the blue light is presumably emitted by argon and xenon. Why are the streamers blue while the pads at both ends are orange? A plasma globe's electric field is strong near the central electrode, decreasing with distance, so I would not expect the orange color at both ends.

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
4
Views
2K
Replies
3
Views
7K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K