Magnetic force in a moving coordinate system

brianeyes88677
Messages
14
Reaction score
0
Consider a line charge with charge density λ and a electric charge q. A coordinate system moving at velocity v ,it will see the line charge as a current ,and the electric charge(which is also moving seen from the moving coordinate system) will feels magnetic force. Why does this happens?
 
Physics news on Phys.org
[strike]In a moving reference frame the line charge and the point charge are not moving relative to each other, so the charge will not "feel" any magnetic field.[/strike]
Disregard that, it's not correct.
 
Last edited by a moderator:
Tajimura said:
In a moving reference frame the line charge and the point charge are not moving relative to each other, so the charge will not "feel" any magnetic field.

This is irrelevant, the charge is moving and there is a magnetic field, so the charge will be subjected to a magnetic force. What needs to be realized is that magnetic and electric fields, and therefore forces, transform into each other under Lorentz transformations.
 
Orodruin said:
This is irrelevant, the charge is moving and there is a magnetic field, so the charge will be subjected to a magnetic force. What needs to be realized is that magnetic and electric fields, and therefore forces, transform into each other under Lorentz transformations.
Yup, you are right. It just rained down on me after I send the answer and left the forum, that relative speed of charges bears no importance here. Magnetic force is just a relativistic effect of changing a reference frame, and though moving observer is observing additional magnetic force, electric force observed by him is less than the electric force observed by stationary observer, so full force is just the same in both cases.
 
Can anyone do it mathematically?
 
brianeyes88677 said:
Can anyone do it mathematically?
Just insert linear change field into Lorentz transformations with burst v and see how the field get transformed into linear combination of electric and magnetic fields.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top