1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Magnetic susceptibility integral trouble

  1. Jan 28, 2015 #1
    Hello,

    This is really more of an algebra question. Here is the main integral I am using for the susceptibility

    [itex] V\chi_0=\frac{d\langle \vec{m_i}\rangle}{d\vec{H_i}}=\frac{1}{Z}\int\vec{m_i}\frac{d}{d\vec{H_i}}e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m-\frac{1}{Z^2}\frac{dZ}{d\vec{H_i}}\int\vec{m_i}e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m[/itex]
    Z is the partition function, m is the magnetic moment, H is the field, beta is just a constant in these calculations.

    I have it that

    [itex] \langle\vec{m_i}\rangle=\frac{1}{\mu_0\beta}\frac{1}{Z}\frac{dZ}{d\vec{H_i}}[/itex]

    And ultimately I need to show that the susceptibility equation can be expressed as


    [itex] V\chi_0=\mu_0\beta(\langle\vec{m_i}^2\rangle-\langle\vec{m_i}\rangle^2)[/itex]
    I can get pretty close. If we look at the first term in the susceptibility equation at the top of the post


    [itex]
    \frac{1}{Z}\int\vec{m_i}\frac{d}{d\vec{H_i}}e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m\\
    =\frac{1}{Z}\int\mu_0\beta\vec{m_i^2}\,e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m\\
    =\mu_0\beta\frac{1}{Z}\int\vec{m_i^2}\,e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m\\
    =\mu_0^2\beta^2\langle\vec{m_i}^2\rangle\\

    [/itex]
    The last line simplification was achieved using the relation given at the top of the post (second equation down).
    The second term then

    [itex]
    \frac{1}{Z^2}\frac{dZ}{d\vec{H_i}}\int\vec{m_i}e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m\\
    =\frac{1}{Z}\frac{1}{Z}\frac{dZ}{d\vec{H_i}}\int\vec{m_i}e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m\\
    =\frac{1}{Z}\frac{1}{Z}\frac{dZ}{d\vec{H_i}}\frac{dZ}{d\vec{H_i}}\frac{1}{\mu_0\beta}\\
    =\frac{1}{Z}\frac{dZ}{d\vec{H_i}}\langle\vec{m_i}\rangle\\
    =\langle\vec{m_i}\rangle^2\mu_0\beta
    [/itex]
    Giving a final result for the susceptibility as

    [itex]
    V\chi_0=\mu_0^2\beta^2\langle\vec{m_i}^2\rangle-\langle\vec{m_i}\rangle^2\mu_0\beta
    [/itex]

    So basically I have an extra factor of [itex]\mu_0\beta[/itex] in the first term so I can't factorize it out to achieve the result I am supposed to. My apologies for the long winded nature of the post but if you could point out where I've made a mistake it would be greatly appreciated.
     
  2. jcsd
  3. Jan 28, 2015 #2

    TSny

    User Avatar
    Homework Helper
    Gold Member

    The last line line is incorrect. You should be able to interpret the expression ##\frac{1}{Z} \int\vec{m_i^2}\,e^{\mu_0\vec{m}\cdot\vec{H}\beta}d^2m##.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Magnetic susceptibility integral trouble
Loading...