# Manipulation of Cartesian Tensors

I have a question relating to a particle rotating around a point with velocity $$u = \Omega \times r$$, where $$\Omega$$ is the angular velocity and r is the position relative to the pivot point.

I need to prove that the acceleration is given by,

$$a = -\frac{1}{2} \nabla [(\Omega \times r)^2]$$

I figured it should follow from the fact that,

$$a = \frac{du}{dt} = \frac{\partial u}{\partial t} + u \cdot \nabla u = u \cdot \nabla u$$

But I can't work out where to go from there. We are supposed to use Cartesian tensor methods to work it out.

Could anyone help me out?

Related Calculus and Beyond Homework Help News on Phys.org
dextercioby
Homework Helper
$$\vec{a}=\frac{d\vec{v}}{dt}=\frac{d}{dt}\left(\vec{\Omega}\times \vec{r}\right) =\frac{d\vec{\Omega}}{dt}\times\vec{r} +\vec{\Omega}\times\frac{d\vec{r}}{dt}$$

Daniel.

dextercioby
Homework Helper
$$\frac{d\vec{\Omega}}{dt}=\left(\vec{\Omega}\times \vec{r}\cdot\nabla\right)\vec{\Omega}$$

$$\frac{d\vec{\Omega}}{dt}\times \vec{r}=\left[\left(\vec{\Omega}\times \vec{r}\cdot\nabla\right)\vec{\Omega}\right]\times \vec{r}= \frac{1}{2}\nabla\left[\left(\vec{\Omega}\times\vec{r}\right)\cdot\left(\vec{\Omega}\times\vec{r}\right)\right] -\vec{\Omega}\times\left(\vec{\Omega}\times\vec{r}\cdot\nabla\right)\vec{r}$$

In the end i get the plus sign.

Daniel.

Last edited:
Thanks, Daniel.

Yeah, I suspect the negative sign was a typo on the question sheet, especially considering the identity,

$$\vec u \cdot \nabla \vec u = \frac{1}{2} \nabla (\vec u \cdot \vec u) + (\nabla \times \vec u) \times \vec u$$