Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Many body wavefunction and exchange correlation

  1. Jan 13, 2016 #1
    Everywhere I ready about HF or DFT the term exchange correlation functional comes up. I have a couple of fundamental questions about these:

    1) Books say that the correlation energy is the difference between the exact energy (lets say we've found that somehow) and the hartree-fock energy and that the exchange term is accounted for exactly in the hartree-fock energy. While these claims depend on what exactly you include in the correlation energy, isn't the second part on getting the exact exchange totally wrong?? This is because the wave functions that are used to construct/evaluate the hartree fock energy are not the "exact" single electron wavefunctions to begin with so whatever mathematical construct we use to get the exchange energy term can only yield us a false answer. We don't know if there are things called single electron wavefunctions! Or am I wrong? I mean lets say we got the "exact" single electron wavefunctions from somehwhere. Then can we calculate the exchange energy the way its been calculated in hartree-fock method ? Is there a fundamental way to combine all the "exact" single electron wavefunctions to give us the total wavefunction?

    2) Likewise, all books say that when we take into account coulombic repulsion, only using the composite wave function can only give us the same exact repulsion. If we use individual electron wavefunctions or densities, then this becomes a mean field approximation. I really do not understand this. In the end an electron is particle at least to the extent that it cannot feel repulsion from itself. So if it feels the repulsion from other charge densities (given we know what they are), why should this be a problem ?. I put forward the same proposal again - if i can get the "exact" single electronic wavefunctions from somewhere, then wouldn't it feel the repulsion of other electrons in the way this normal "averaged" coulomb term describes.
    To be more specific, I provide this document http://www.physics.metu.edu.tr/~hande/teaching/741-lectures/lecture-05.pdf where on page 2, Eq. (11) the real accurate term has been described for calculating the exact repulsion from the many-body density. It says there "It can be proven that this (electron electron repulsion) term cannot be written in terms of the single-particle density but instead only in terms of the two-particle density". Can someone please direct me to the proof?

    3) Are we in the end saying that there is no rule of physics which can tell how one exact single many body wavefunction for N electrons can be decomposed into N exact 1-body wavefunctions or vice versa. Is this really the challenge that we haven't been able to solve in order to get to the correct exchange-correlation functional? If yes please explain a bit further. Also, has this all got to do anything with the second quantization, whatever that means.

    Thanks a lot for your attention.
     
  2. jcsd
  3. Jan 19, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
  4. Jan 20, 2016 #3
    To reword it and shorten it I'd say this:

    Every text I read says we do not know the exact exchange-correlation functional. Is this related to the non-existence of single body wavefunctions in a many body system? or is it related to the lack of our knowledge of being able to mathematically combine N single body wavefuntions into one many body wavefunction (or the vice versa - deconstruct the many body wavefuntion into N single body wavefunctions.)?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Many body wavefunction and exchange correlation
Loading...