Solution to problem 16.
The actual calculations are in the attached pdf file. I just outline in this post what was done.
We define a basis for ##\mathfrak{su}(2,\mathbb{C})## as:
##
u_1 = i \sigma_1 =
\begin{pmatrix}
0 & i \\ i & 0
\end{pmatrix}
, \quad
u_2 = i \sigma_2 =
\begin{pmatrix}
0 & 1 \\ -1 & 0
\end{pmatrix}
, \quad
u_3 = i \sigma_3 =
\begin{pmatrix}
i & 0 \\ 0 & -i
\end{pmatrix}
##
with brackets:
##
[ u_1 , u_2 ] = - 2 u_3 , \quad [ u_2 , u_3 ] = - 2 u_1 , \quad [ u_3 , u_1 ] = - 2 u_2 .
##
We compute ##[(\alpha_1 , \alpha_2 , \alpha_3) , (\alpha_1' , \alpha_2' , \alpha_3')]## defined by ##[(\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3) , (\alpha_1' u_1 + \alpha_2' u_2 + \alpha_3' u_3)]##. We easily find:
##
[(\alpha_1 , \alpha_2 , \alpha_3) , (\alpha_1' , \alpha_2' , \alpha_3')] =
##
##
= 2 (\alpha_3 \alpha_2' - \alpha_2' \alpha_3) u_1 + 2 (\alpha_1 \alpha_3' - \alpha_3 \alpha_1') u_2 + 2 (\alpha_2 \alpha_1' - \alpha_1 \alpha_2') u_3 .
##
We define an adjusted ##\varphi## by:
\begin{align*}
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3) &= \varphi (\alpha_1 (i \sigma_1) + \alpha_2 (i \sigma_2) + \alpha_3 (i \sigma_3)) \\
&= \varphi( (i \alpha_1) \sigma_1 + ( i\alpha_2) \sigma_2+ (i \alpha_3) \sigma_3) \\
\end{align*}
Then from
\begin{align*}
\varphi(\alpha_1 \sigma_1 +\alpha_2 \sigma_2+\alpha_3 \sigma_3)&.(a_0+a_1x+a_2x^2+a_3y+a_4y^2+a_5xy)= \\
&= x(- i \alpha_1 a_3 + \alpha_2 a_3 - \alpha_3 a_1 )+\\
&+ x^2(2 i \alpha_1 a_5 + 2 \alpha_2 a_5 + 2 \alpha_3 a_2 )+\\
&+ y(i \alpha_1 a_1 + \alpha_2 a_1 + \alpha_3 a_3 )+\\
&+ y^2(2 i \alpha_1 a_5 -2 \alpha_2 a_5 -2 \alpha_3 a_4 )+\\
&+ xy(- i \alpha_1 a_2 - i \alpha_1 a_4 +\alpha_2 a_2 - \alpha_2 a_4 )
\end{align*}
we have:
\begin{align*}
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.(a_0+a_1x+a_2x^2+a_3y+a_4y^2+a_5xy) = \\
= \varphi( (i \alpha_1) \sigma_1 + ( i\alpha_2) \sigma_2+ (i \alpha_3) \sigma_3)&.(a_0+a_1x+a_2x^2+a_3y+a_4y^2+a_5xy)= \\
&= x(\alpha_1 a_3 +i\alpha_2 a_3 - i\alpha_3 a_1 )+\\
&+ x^2(-2\alpha_1 a_5 +2 i\alpha_2 a_5 + 2i\alpha_3 a_2 )+\\
&+ y(- \alpha_1 a_1 + i \alpha_2 a_1 +i\alpha_3 a_3 )+\\
&+ y^2(-2\alpha_1 a_5 -2i\alpha_2 a_5 -2i\alpha_3 a_4 )+\\
&+ xy(\alpha_1 a_2 +\alpha_1 a_4 +i\alpha_2 a_2 -i\alpha_2 a_4 ) \qquad Eq (1)
\end{align*}
Part 16 a) Is done in pdf file where I prove
##
[\tilde{\varphi} (\alpha_1 , \alpha_2 , \alpha_3) , \tilde{\varphi} (\alpha_1' , \alpha_2' , \alpha_3')] = \tilde{\varphi} ([(\alpha_1 , \alpha_2 , \alpha_3) , (\alpha_1' , \alpha_2' , \alpha_3')])
##
when applied to ##1,x,x^2,y,y^2##, and ##xy## in turn.16 b) Components that are transformed into linear combinations of themselves under repeated application of ##\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 +\alpha_3 u_3)## form an invariant subspace. Irreducible components are an invariant subspace which cannot be separated into smaller invariant subspaces. From Eq 1 we have:
\begin{align*}
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.1 = 0\\
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.x= - x i \alpha_3 + y (- \alpha_1 + i \alpha_2) \\
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.x^2 = 2 x^2 i \alpha_3 + xy (\alpha_1 + i \alpha_2) \\
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.y = x (- \alpha_1 + i \alpha_2) + y i \alpha_3 \\
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.y^2 = - 2 y^2 i \alpha_3 - xy (- \alpha_1 + i \alpha_2) \\
\tilde{\varphi} (\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3)&.xy = 2 x^2 (- \alpha_1 + i \alpha_2) - 2 y^2 (\alpha_1 + i \alpha_2) .
\end{align*}
It is then obvious that the irreducible components are:
##
\{ 1 \}
##
##
\{ x , y \}
##
##
\{ y^2 , xy , x^2 \} .
##16 c) The corresponding vectors of maximum weight are
##
1 ,
##
##
y ,
##
##
x^2
##
respectively - see the pdf file.
p.s. Hello
@fresh_42. I've done the calculation with the adjusted ##\varphi## and still think there is a slight typo in the question. In the original question you wrote:
\begin{align*}
\varphi(\alpha_1 \sigma_1 +\alpha_2 \sigma_2+\alpha_3 \sigma_3)&.(a_0+a_1x+a_2x^2+a_3y+a_4y^2+a_5xy)= \\
&= \dots\\
&+ y(-i \alpha_1 a_1 - \alpha_2 a_1 +i\alpha_3 a_3 )+\\
&+ \dots
\end{align*}
but I think it should say:
\begin{align*}
\varphi(\alpha_1 \sigma_1 +\alpha_2 \sigma_2+\alpha_3 \sigma_3)&.(a_0+a_1x+a_2x^2+a_3y+a_4y^2+a_5xy)= \\
&= \dots\\
&+ y(i \alpha_1 a_1 + \alpha_2 a_1 +i\alpha_3 a_3 )+\\
&+ \dots
\end{align*}
Could you check my calculations in the pdf.