Challenge Math Challenge - May 2020

Click For Summary
The Math Challenge - May 2020 discussion covers a variety of mathematical problems, including analysis, topology, integrals, and group theory. Key topics include the continuity of specific functions in defined topologies, the calculation of integrals involving trigonometric functions, and properties of the p-Prüfer group. Participants provide solutions and alternative approaches to problems, demonstrating collaboration and problem-solving strategies. The thread showcases a mix of advanced mathematical concepts suitable for high school students and beyond, emphasizing the importance of rigorous proof and logical reasoning.
  • #61
For a second order DE (which was necessarily of that order to get cosine to be cosine again) there will be two solutions (one for each root of the characteristic equation) with two constants (of integration if you will) that need to be solved for by initial conditions, usually either a pair of function values or one of these and the value of the derivative at a given point. I have the value of the function at zero, but to fully determine the solution I need another such value.

I’m always down to learn a new method of calculating problematic integrals: teach me something!
 
Physics news on Phys.org
  • #62
For ##\alpha=0## we have $$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}=[\arctan (x)]_{-\infty}^{+\infty} = \dfrac{\pi}{2}-\left(-\dfrac{\pi}{2}\right)=\pi$$
so we may assume ##\alpha> 0## now, substitute ##t=\alpha x , \beta= \alpha^{-1}## and observe using integration by parts twice
\begin{align*}
\int_0^\infty e^{-t}&\sin(\beta t)\,dt = \left. -e^{-t}\sin(\beta t)\right|_0^\infty + \beta \int_0^\infty e^{-t}\cos(\beta t)\,dt\\
&= 0 + \beta\left(\left[ -e^{-t}\cos(\beta t) \right]_0^\infty -\beta \int_0^\infty (-e^{-t})(-\sin(\beta t)) \,dt \right)\\
&= \beta -\beta^2 \int_0^\infty e^{-t}\sin(\beta t)\,dt
\end{align*}
and thus
$$
\int_0^\infty e^{-t}\sin(\beta t)\,dt = \dfrac{\beta}{1+\beta^2}
$$
This means
\begin{align*}
\int_{-\infty}^{+\infty}\dfrac{\cos(\alpha x)}{1+x^2}\,dx &= \int_{-\infty}^{+\infty}\dfrac{\cos(\alpha x)}{x} \cdot \dfrac{x}{1+x^2} \,dx\\
&=2\int_0^\infty \left( \dfrac{\cos(\alpha x)}{x} \int_0^\infty e^{-t}\sin(x t)\,dt \right)\,dx \\
&= \int_0^\infty \int_0^\infty e^{-t} \cdot \dfrac{2\sin(xt)\cos(\alpha x)}{x}\,dt\,dx \\
&= \int_0^\infty \int_0^\infty e^{-t}\cdot \dfrac{\sin(x(t+\alpha))+\sin(x(t-\alpha))}{x}\,dx\,dt \\
&=\int_0^\infty e^{-t} \cdot \left( \dfrac{\pi}{2}\operatorname{sgn}(t+\alpha) + \dfrac{\pi}{2}\operatorname{sgn}(t-\alpha) \right)\,dt\\
&=\pi \int_\alpha^\infty e^{-t}\,dt\\
&= \pi \cdot e^{-\alpha}
\end{align*}
 
  • Like
Likes benorin

Similar threads

  • · Replies 100 ·
4
Replies
100
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 42 ·
2
Replies
42
Views
10K
  • · Replies 61 ·
3
Replies
61
Views
11K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 52 ·
2
Replies
52
Views
12K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 107 ·
4
Replies
107
Views
19K
  • · Replies 114 ·
4
Replies
114
Views
11K