MHB Math Help: Understand How to Compute $F_{X_1}(x)$

AI Thread Summary
The discussion centers on understanding the computation of the cumulative distribution function \( F_{X_1}(x) \) using the binomial distribution. The formula \( F_{X_1}(x) = \sum_{j=1}^n \binom{n}{1} F^1(x) (1-F(x))^{n-1} \) represents the probability of obtaining at least one success in \( n \) trials. It is derived from the complement rule, where \( F_{X_1}(x) \) is calculated as \( 1 - (1 - F(x))^n \). This indicates that the total probability for a specific value \( x \) sums to 1, confirming that \( F_{X_0}(x) = 1 \). The explanation emphasizes the relationship between the binomial distribution and cumulative probabilities.
WMDhamnekar
MHB
Messages
376
Reaction score
28
1655630667801.png


Now, I don't understand how did author compute $F_{X_1}(x) = \displaystyle\sum_{j=1}^n \binom{n}{1} F^1(x) (1-F(x))^{n-1} = 1-(1-F(x))^n ?$ (I know L.H.S = R.H.S)

Would any member of Math help board explain me that? Any math help will be accepted.
 
Mathematics news on Phys.org
The formula $\binom nj F^j(x)(1-F(x))^{n-j}$ is the probability mass function of the binomial distribution with parameters $p=F(x)$ and $n$.
Consequently we have that all possibilities for a specific $x$ sum up to $1$.
It implies that $F_{X_0}(x)=1$.
We can use the complement rule $P(A^c)=1-P(A)$ to calculate $F_{X_1}(x)$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top