MHB Math induction with sigma notation

carameled
Messages
3
Reaction score
0
Prove by math induction that

n
sigma 3i + 1 = n/2 (3n + 5)
i = n
 
Physics news on Phys.org
I think what you mean is the induction hypothesis \(P_n\):

$$\sum_{i=1}^{n}\left(3i+1\right)=\frac{n}{2}(3n+5)$$

The first thing we want to do is confirm the base case \(P_1\) is true:

$$\sum_{i=1}^{1}\left(3i+1\right)=\frac{1}{2}(3(1)+5)$$

Is this true?
 
Wow, well I'm just asking for the prove with math induction. I don't understand any of that..
MarkFL said:
I think what you mean is the induction hypothesis \(P_n\):

$$\sum_{i=1}^{n}\left(3i+1\right)=\frac{n}{2}(3n+5)$$

The first thing we want to do is confirm the base case \(P_1\) is true:

$$\sum_{i=1}^{1}\left(3i+1\right)=\frac{1}{2}(3(1)+5)$$

Is this true?
 
carameled said:
Wow, well I'm just asking for the prove with math induction. I don't understand any of that..

You don't understand what an induction hypothesis is, or demonstrating the truth of the base case? These are fundamental to induction. What method have you been taught?
 
oh I was wrong, it is i = 1 , not i = n. my bad
MarkFL said:
You don't understand what an induction hypothesis is, or demonstrating the truth of the base case? These are fundamental to induction. What method have you been taught?
 
Well, can you answer the question: is the statement true when n= 1?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top