Mathematical Induction 4+11+14+21+....+(5n+(-1)^n

AI Thread Summary
The discussion focuses on proving the formula for the sum of the series 4 + 11 + 14 + 21 + ... + (5n + (-1)^n) using mathematical induction. The user successfully verifies the base case for n=1 and establishes the induction hypothesis. They outline the steps taken to prove the formula for k+1, including algebraic manipulations to incorporate the new term. The proof concludes by demonstrating that the derived expression for P_{n+1} aligns with the expected format, thus completing the induction process. The user seeks assistance with the algebraic steps but ultimately arrives at a valid proof.
Yankel
Messages
390
Reaction score
0
Dear all

I am trying to prove by induction the following:

View attachment 8712

I checked it for n=1, it is valid. Then I assume it is correct for some k, and wish to prove it for k+1, got stuck with the algebra. Can you kindly assist ?

Thank you.
 

Attachments

  • induction.PNG
    induction.PNG
    1.5 KB · Views: 119
Mathematics news on Phys.org
I would state the induction hypothesis \(P_n\):

$$\sum_{k=1}^{n}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5n(n+1)+(-1)^n-1\right)$$

As the induction step, I would add $$5(n+1)+(-1)^{n+1}$$ to both sides:

$$\sum_{k=1}^{n}\left(5k+(-1)^k\right)+5(n+1)+(-1)^{n+1}=\frac{1}{2}\left(5n(n+1)+(-1)^n-1\right)+5(n+1)+(-1)^{n+1}$$

Incorporate the new term:

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5n(n+1)+(-1)^n-1+2\cdot5(n+1)+2\cdot(-1)^{n+1}\right)$$

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5(n+1)(n+2)+(-1)^n(1+2(-1))-1\right)$$

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5(n+1)((n+1)+1)+(-1)^{n+1}-1\right)$$

We have derived \(P_{n+1}\) from \(P_n\) thereby completing the proof by induction.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top