Mathematical Induction with Sigma notation

Click For Summary

Discussion Overview

The discussion revolves around proving a mathematical statement using induction, specifically the formula for the sum of cubes expressed in sigma notation. Participants explore the base case and the induction step, addressing errors and clarifying the process involved in mathematical induction.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant presents the initial claim involving the sum of cubes and attempts to verify the base case.
  • Another participant suggests the induction hypothesis and advises adding the next term to both sides for the induction step.
  • There is a correction regarding an error in the base case verification, specifically the miscalculation involving the denominator.
  • Further clarification is provided on how to approach the k+1 case, including factoring and simplifying the expression.
  • A participant expresses understanding after receiving guidance on the induction process.

Areas of Agreement / Disagreement

Participants generally agree on the approach to proving the statement by induction, but there is an initial disagreement regarding the correct evaluation of the base case, which is later clarified.

Contextual Notes

Limitations include the initial miscalculation of the base case and the dependence on correctly applying the formula for the sum of cubes. The discussion does not resolve all potential misunderstandings about the induction process.

Who May Find This Useful

This discussion may be useful for students learning about mathematical induction, particularly in the context of summation formulas and error correction in mathematical proofs.

NotChelsea
Messages
2
Reaction score
0
Prove by mathematical induction that

n
sigma r^3 = n^2(n+1)^2/4
r = 1

so far I have

1
sigma r^3 = 1^2(1+1)^2/2
r=1

1 = 1(4)/2

1 = 4/2

1 = 2

I'm not sure what to do after this for the k+1 case.
 
Last edited:
Physics news on Phys.org
Hello, and welcome to MHB! (Wave)

Your induction hypothesis $P_n$ is:

$$\sum_{r=1}^{n}\left(r^3\right)=\frac{n^2(n+1)^2}{4}$$

As your induction step, I would suggest adding $$(n+1)^3$$ to both sides...

edit: I just noticed you have an error in your check of the base case $P_1$...can you spot it?
 
ummmm is it because of the "1 = 2"?
 
The "1=2" happened because you divided by 2 instead of 4.
 
NotChelsea said:
Prove by mathematical induction that

n
sigma r^3 = n^2(n+1)^2/4
r = 1

so far I have

1
sigma r^3 = 1^2(1+1)^2/2
r=1
As Opalg pointed out, in your original formula you have "/4" but have accidently changed that to "/2".

1 = 1(4)/2

1 = 4/2

1 = 2
which is NOT true! But with "4" in the denominator as in the original formula this becomes 1= 1(4)/4 which is true.

I'm not sure what to do after this for the k+1 case.
The reason so many induction problems involve sums is that then the "k+1" case is just the "k" case plus the next term!

With n= k+ 1 you have
[math]\sum_{r=1}^{k+1} r^3= \sum_{r= 1}^k r^3+ (k+1)^3[/math]
[math]= k^2(k+1)^2/4+ (k+1)^3[/math].

Factor [math](k+1)^2[/math] out of that to get
[math]= (k+1)^2(k^2/4+ k+ 1)= (k+1)^2(k^2+ 4k+ 4)/4[/math]

And now you just have to observe that [math]k^2+ 4k+ 4= (k+ 2)^2= ((k+1)+1)^2[/math] so that [math](k+1)^2(k^2+ 4k+ 4)/4= (k+1)^2((k+1)+1)^2/4[/math]
really is "[math]n^2(n+1)^2/4[/math]" with n= k+ 1.
 
ohhhh I see it now. Thank you so much!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K