- #1

- 21

- 1

Here is my most recent attempt:

Y[t_, m_, A_] := y[t] /. DSolve [{-m 1/2 Cw \[Rho] A y'[t]^2 + m g == y''[t], y'[0] == 0, y[0] == h}, y[t], t]

The delayed assignment was my attempt to get around the coefficients not being supplied. If I try to use that, by say, doing BB[t] = Y[t, .145, Pi .0366^2], mathematica throws the error

Solve::inex: Solve was unable to solve the system with inexact coefficients or the system obtained by direct rationalization of inexact numbers present in the system. Since many of the methods used by Solve require exact input, providing Solve with an exact version of the system may help

I was also thinking of using Assume, but as far as I can tell, you can't assume with DSolve. I am new to Mathematica so it's also possible that there is a simple solution I am unaware of.