MHB Matrix Exponential and series idenfication

Dustinsfl
Messages
2,217
Reaction score
5
Let
\[
\mathbf{A} =
\begin{bmatrix}
0 & 1 & 0\\
0 & 0 & 1\\
-4 & -5 & -4
\end{bmatrix}
\]
Then I want to find \(e^{\mathbf{A}t}\).
\[
\mathbf{I} + \mathbf{A}t +\frac{\mathbf{A}^2t^2}{2!} + \frac{\mathbf{A}^3t^3}{3!} + \cdots
\]
I have up to the 6th term but I can't identify the series.
\[
\begin{bmatrix}
1 - \frac{2t^3}{3} + \frac{2t^4}{3} - \frac{11t^5}{30} + \frac{7t^6}{45} &
t - \frac{5t^3}{6} + \frac{2t^4}{3} - \frac{13t^5}{40} + \frac{2t^6}{15} &
\frac{t^2}{2} - \frac{2t^3}{3} + \frac{11t^4}{24} - \frac{7t^5}{30} + \frac{73t^6}{720}\\
-2t^2 + \frac{8t^3}{3} - \frac{11t^4}{6} + \frac{14t^5}{15} - \frac{73t^6}{180} &
1 - \frac{5t^2}{2} + \frac{8t^3}{3} - \frac{13t^4}{8} + \frac{4t^5}{5} - \frac{253t^6}{720} &
-\frac{49 t^6}{180} + \frac{73 t^5}{120} - \frac{7 t^4}{6} + \frac{11 t^3}{6} - 2t^2 + t\\
\frac{49 t^6}{45} - \frac{73 t^5}{30} + \frac{14 t^4}{3} - \frac{22 t^3}{3} + 8t^2 - 4t &
\frac{43 t^6}{45} - \frac{253 t^5}{120} + 4t^4 - \frac{13 t^3}{2} + 8t^2 - 5t &
\frac{59 t^6}{80} - \frac{49 t^5}{30} + \frac{73 t^4}{24} - \frac{14t^3}{3} + \frac{11 t^2}{2} - 4t + 1
\end{bmatrix}
\]
 
Physics news on Phys.org
In principle you can diagonalise $A$, $A = U^*DU$, where $U$ is unitary and $D$ is diagonal (with the eigenvalues of $A$ as its diagonal elements). Then $e^{At} = U^*D^{At}U$, and you can easily evaluate $D^{At}$ by taking the exponentials of the eigenvalues. Unfortunately in this case the eigenvalues are irrational (and two of them are complex). Maybe you can use some numerical method to get an approximate diagonalisation?
 
Opalg said:
In principle you can diagonalise $A$, $A = U^*DU$, where $U$ is unitary and $D$ is diagonal (with the eigenvalues of $A$ as its diagonal elements). Then $e^{At} = U^*D^{At}U$, and you can easily evaluate $D^{At}$ by taking the exponentials of the eigenvalues. Unfortunately in this case the eigenvalues are irrational (and two of them are complex). Maybe you can use some numerical method to get an approximate diagonalisation?

I tried that method first that is why I moved on to this form.
 
I can't pretend to be an expert, but http://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf outlining 19 "dubious" ways to compute a matrix exponential. Use at your own risk!
 
Ackbach said:
I can't pretend to be an expert, but http://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf outlining 19 "dubious" ways to compute a matrix exponential. Use at your own risk!

I have read that plus the numerous other links that come up from Googling the topic.
 
dwsmith said:
I have read that plus the numerous other links that come up from Googling the topic.

Well, then you know more than I do about matrix exponentials! I hope you find a do-able method for your problem. The command

Code:
N[MatrixExp[{{0, 1, 0}, {0, 0, 1}, {-4, -5, -4}}t]] // MatrixForm

gives a result in Mathematica. It's pretty long and ugly - I don't know how exact a solution you need.
 
Found the problem, I should have had a -6 not -5 and everything works.
 

Similar threads

Replies
2
Views
1K
Replies
12
Views
2K
Replies
2
Views
1K
Replies
14
Views
2K
Replies
1
Views
3K
Replies
4
Views
965
Back
Top