- #1
tanaygupta2000
- 204
- 14
- Homework Statement:
-
Consider an N-dimensional linear vector space spanned by the ortho-normal basis
states, {|b1>, |b2>, ...., |bN>}. An operator R is given to operate on these basis stats as: R|b(j) = |b(j+1)> for j=1 to (N-1), and R|bN> = |b1>.
Write R in the matrix form in the given basis.
- Relevant Equations:
-
<ψ|R|ψ> = Σ(i) Σ(j) <ψ|bj> <bj|R|bi> <bi|ψ>
where
R operator = <bj|R|bi> matrix
I have successfully found the N by N matrix corresponding to the operator R.
But the problem is, whenever I try to operate R on |bj> basis vectors, I am not getting |b(j+1)> as it should be.
Instead, I am getting result as given in the question only by <bj|R = <b(j+1)|
Matrix is not working with kets.
Please help !