lockedup
- 67
- 0
Homework Statement
Find the matrix of the transformation:T: R^{2} \rightarrow R^{2x2}
<br /> \[<br /> T(a,b) =<br /> \left[ {\begin{array}{cc}<br /> a & 0 \\<br /> 0 & b \\<br /> \end{array} } \right]<br /> \]
Homework Equations
The Attempt at a Solution
I choose the standard bases for R^{2} and R^{2x2} and call them b and b' respectively.
T(1,0) = 1e_{1} + 0e_{2} + 0e_{3} + 0e_{4}
T(0,1) = 0e_{1} + 0e_{2} + 0e_{3} + 1e_{4}
This gives me a matrix of
<br /> \[<br /> \left[ {\begin{array}{cc}<br /> 1 & 0 \\<br /> 0 & 0 \\<br /> 0 & 0 \\<br /> 0 & 1 \\<br /> \end{array} } \right]<br /> \]
However, this doesn't work when I multiply by the column vector (a,b). I get a column vector of (a, 0, 0, b) instead of a 2x2 matrix. What's going on?