murshid_islam
- 468
- 21
- TL;DR Summary
- Matrix representation for closed-form expression for Fibonacci numbers:
From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:
\begin{pmatrix}<br /> 1 & 1 \\<br /> 1 & 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} & F_n \\<br /> F_n & F_{n-1}\\<br /> \end{pmatrix}
That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?
\begin{pmatrix}<br /> 1 & 1 \\<br /> 1 & 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} & F_n \\<br /> F_n & F_{n-1}\\<br /> \end{pmatrix}
That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?