Undergrad Matrix representation for closed-form expression for Fibonacci numbers

Click For Summary
The matrix representation for Fibonacci numbers is established as the power of the matrix \(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\), yielding Fibonacci values when starting from F_0 = 0 and F_1 = 1. To adapt this for arbitrary starting values, such as F_0 = a and F_1 = b, the initial matrix can be modified to \(\begin{pmatrix} a+b & b \\ b & a \end{pmatrix}\). This matrix can then be multiplied repeatedly on the left by the Fibonacci matrix to generate subsequent Fibonacci-like values. The discussion emphasizes the need for this adjustment to accommodate different initial conditions. Understanding this transformation is crucial for applying matrix methods to generalized Fibonacci sequences.
murshid_islam
Messages
468
Reaction score
21
TL;DR
Matrix representation for closed-form expression for Fibonacci numbers:
From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:

\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} &amp; F_n \\<br /> F_n &amp; F_{n-1}\\<br /> \end{pmatrix}

That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?
 
Physics news on Phys.org
murshid_islam said:
Summary:: Matrix representation for closed-form expression for Fibonacci numbers:

From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:

\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} &amp; F_n \\<br /> F_n &amp; F_{n-1}\\<br /> \end{pmatrix}

That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?
Start with
\begin{pmatrix}<br /> a+b &amp; b \\<br /> b &amp; a\\<br /> \end{pmatrix} =<br /> <br /> \begin{pmatrix}<br /> F_2 &amp; F_1 \\<br /> F_1 &amp; F_0\\<br /> \end{pmatrix}<br />

Then multiply repeatedly on the left by
\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} <br />
 
  • Like
Likes PeroK and murshid_islam
Though same as post #2,
2022-05-10 14.01.44.jpg
 
  • Like
Likes martinbn and murshid_islam
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K