I Matrix representation for closed-form expression for Fibonacci numbers

murshid_islam
Messages
468
Reaction score
21
TL;DR Summary
Matrix representation for closed-form expression for Fibonacci numbers:
From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:

\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} &amp; F_n \\<br /> F_n &amp; F_{n-1}\\<br /> \end{pmatrix}

That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?
 
Physics news on Phys.org
murshid_islam said:
Summary:: Matrix representation for closed-form expression for Fibonacci numbers:

From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:

\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} ^ n =<br /> \begin{pmatrix}<br /> F_{n+1} &amp; F_n \\<br /> F_n &amp; F_{n-1}\\<br /> \end{pmatrix}

That only works when F_0 = 0 and F_1 = 1. How can I find the matrix representation for arbitrary starting values, for example, when F_0 = a and F_1 = b?
Start with
\begin{pmatrix}<br /> a+b &amp; b \\<br /> b &amp; a\\<br /> \end{pmatrix} =<br /> <br /> \begin{pmatrix}<br /> F_2 &amp; F_1 \\<br /> F_1 &amp; F_0\\<br /> \end{pmatrix}<br />

Then multiply repeatedly on the left by
\begin{pmatrix}<br /> 1 &amp; 1 \\<br /> 1 &amp; 0\\<br /> \end{pmatrix} <br />
 
  • Like
Likes PeroK and murshid_islam
Though same as post #2,
2022-05-10 14.01.44.jpg
 
  • Like
Likes martinbn and murshid_islam
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top