Matrix representation in QM Assignment -- Need some help please

Ashish Somwanshi
Messages
31
Reaction score
4
Homework Statement
In the lecture, we used the eigenstates |z+⟩ and |z−⟩ of Sz^, we obtained the matrices for spin operators

Sx^=ℏ/2(0,1,1,0) Sy^=ℏ/2(0,i,−i,0) Sz^=ℏ/2(1,0,0,−1)
note: the numbers in brackets are 2×2 matrices!!!


Now use the eigenstates of |x+⟩ and |x−⟩ of Sx^,as a new basis, construct matrices for the spin operators Sx^, Sy^ and Sz^.
Relevant Equations
Both Question and Relevant equations are posted below in attempt.
This screenshot contains the original assignment statement and I need help to solve it. I have also attached my attempt below. I need to know if my matrices were correct and my method and algebra to solve the problem was correct...
Screenshot_20221008_235549.jpg
 

Attachments

Physics news on Phys.org
Ashish Somwanshi said:
Homework Statement:: In the lecture, we used the eigenstates |z+⟩ and |z−⟩ of Sz^, we obtained the matrices for spin operators

Sx^=ℏ/2(0,1,1,0) Sy^=ℏ/2(0,i,−i,0) Sz^=ℏ/2(1,0,0,−1)
note: the numbers in brackets are 2×2 matrices!Now use the eigenstates of |x+⟩ and |x−⟩ of Sx^,as a new basis, construct matrices for the spin operators Sx^, Sy^ and Sz^.
Relevant Equations:: Both Question and Relevant equations are posted below in attempt.

I have also attached my attempt below.
Please make it a habit to post your work using LaTeX, and not in blurry attached pictures. There is a "LaTeX Guide" link below the Edit window to help you learn LaTeX. Thank you.
 
My solution to above assignment goes like this:

Since
| ×±> = 1/ sqrt(2) |z+> ± 1/sqrt(2) |z->

|x+> = 1/sqrt (2) |z+> + 1/sqrt(2) |z->
|x-> = 1/sqrt(2) |z+> - 1/sqrt(2) |z->

So eigenvalue equations are:

Sx |x+> = 1/sqrt(2) { |z+> + |z->}
Sx |x-> = 1/sqrt(2) { |z+> - |z->}

So we can represent Sx operator in matrix form as:

Sx = 1/sqrt(2)*
|z+> + |z->0
0|z+> - |z->

Is my method to evaluate Sx operator from the relationship between x and z correct? Also how can I evaluate Sy and Sz operators for spin.?
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top