MHB Matrix solutions with variable coefficient

TheFallen018
Messages
52
Reaction score
0
Hey guys,

I've got this question, that I think I have figured out, but I'm not completely sure.

Basically, I've got the following matrix to put into RREF. Not really a problem, but I'm not sure if I'm handling the variable incorrectly.
$\begin{bmatrix}
1 &-1 &|1 \\
3 &a &|3
\end{bmatrix}$

So, I subtracted 3*row1 from row2, which resulted in this
$\begin{bmatrix}
1 &-1 &|1 \\
0 &a+3 &|0
\end{bmatrix}$

The next thing I did is where I'm not sure about. I divided row2 by (a+3), and then added the resulting row into row 1 to get the matrix in RREF.
$\begin{bmatrix}
1 &0 &|1 \\
0 &1 &|0
\end{bmatrix}$

The remaining parts of the question ask me to find values of a where there is a unique solution, no solutions, and infinitely many solutions.

My thoughts were that there's no value a can take that will make the bottom row inconsistent, so there's no value where there's no solution. There can be infinitely many solutions if we go back to the part where we still have (a+3) in the second row. If we make a equal to -3, then $x_{2}$ becomes a free variable and gives us infinitely many solutions. If a is any other value, then there is a unique solution.

Does that seem right? Thanks
 
Physics news on Phys.org
TheFallen018 said:
Hey guys,

I've got this question, that I think I have figured out, but I'm not completely sure.

Basically, I've got the following matrix to put into RREF. Not really a problem, but I'm not sure if I'm handling the variable incorrectly.
$\begin{bmatrix}
1 &-1 &|1 \\
3 &a &|3
\end{bmatrix}$

So, I subtracted 3*row1 from row2, which resulted in this
$\begin{bmatrix}
1 &-1 &|1 \\
0 &a+3 &|0
\end{bmatrix}$

The next thing I did is where I'm not sure about. I divided row2 by (a+3), and then added the resulting row into row 1 to get the matrix in RREF.
$\begin{bmatrix}
1 &0 &|1 \\
0 &1 &|0
\end{bmatrix}$

The remaining parts of the question ask me to find values of a where there is a unique solution, no solutions, and infinitely many solutions.

My thoughts were that there's no value a can take that will make the bottom row inconsistent, so there's no value where there's no solution. There can be infinitely many solutions if we go back to the part where we still have (a+3) in the second row. If we make a equal to -3, then $x_{2}$ becomes a free variable and gives us infinitely many solutions. If a is any other value, then there is a unique solution.

Does that seem right? Thanks
Your conclusions are correct (solution is unique except when $a=-3$, when there are infinitely many solutions). But the RREF is only equal to $\begin{bmatrix}1 &0 &|1 \\ 0 &1 &|0 \end{bmatrix}$ when $a\ne-3$. In fact, if $a=-3$ then you cannot divide by $a+3$, so the final step of your calculation of the RREF is invalid in that case. If $a=-3$ then the previous step in the calculation becomes $\begin{bmatrix}1 &-1 &|1 \\ 0 &0 &|0 \end{bmatrix}$, and that is the RREF when $a=-3$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
3K
Replies
10
Views
2K
Replies
7
Views
2K
Replies
7
Views
1K
Replies
12
Views
2K
Replies
11
Views
5K
Back
Top