Hello, Petrus!
Consider the set of triangles whose sides are the x- and y-axes,
and a tangent to the curve $$y = e^{-5x}, x>0$$.
Find the maximum area of these triangles.
Let P be \left(p,\,e^{-5p}\right) be any point on the curve.
The derivative is: .y' \,=\,-5e^{-5x}
We have point P(p,\,e^{-5p}) and slope m = -5e^{-5p}
The equation of the tangent at P is: .y - e^{-5p} \:=\:-5e^{-5p}(x-p)
. . which simplifies to: .y \;=\;-5e^{-5p}x + e^{-5p}(5p+1)
The x-intercept is: .\frac{5p+1}{5}
The y-intercept is: .e^{-5p}(5p+1)
The area of the triangle is: .A \;=\;\frac{1}{2}\cdot\frac{5p+1}{5}\cdot e^{-5p}(5p+1)
Hence: .A \;=\;\tfrac{1}{10}e^{-5p}(5p+1)^2 .[1]Set A' equal to zero.
A' \;=\; \tfrac{1}{10}\left[e^{-5p}2(5p+1)5 - 5e^{-5p}(5p+1)^2\right] \;=\;0
. . . \tfrac{1}{10}\cdot 5e^{-5p}(5p+1)\big[2 - (5p+1)\big] \;=\;0
. . . . . . \tfrac{1}{2}e^{-5p}(5p+1)(1-5p) \;=\;0
Hence: .p = \tfrac{1}{5},\; \color{red}{\rlap{//////}}p = \text{-}\tfrac{1}{5}Substitute into [1]: .A \;=\;\tfrac{1}{10}e^{-5(\frac{1}{5})}\left(5[\tfrac{1}{5}] + 1\right)^2 \;=\; \tfrac{1}{10}e^{-1}(4)
Therefore: .\text{max }A \:=\:\frac{2}{5e}