Maximising area for constant perimeter

Click For Summary

Homework Help Overview

The problem involves finding a curve that maximizes the area enclosed between itself and the x-axis, given a fixed perimeter length of πa. The context is rooted in calculus and variational principles, specifically utilizing the Euler-Lagrange equations.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss applying the Euler-Lagrange equations to derive the necessary conditions for maximizing the area. There are attempts to manipulate the equations and explore different forms of the curve, including a circle. Questions arise regarding the correct formulation of constraints and the implications of different approaches.

Discussion Status

Several participants have provided insights and alternative perspectives on the problem, with some suggesting geometric reasoning as a more straightforward approach. There is an ongoing exploration of the implications of various formulations and the relationships between constants in the equations.

Contextual Notes

Participants note the constraints of the problem, including the fixed perimeter and the requirement for the curve to meet the x-axis at specific points. There is also mention of potential confusion regarding the formulation of the Lagrange multiplier and its impact on the solution.

SunGod87
Messages
30
Reaction score
0

Homework Statement


A curve y = y(x) meets the x-axis at x = a, x = -a and has fixed length pi*a between these points. Show that the curve which encloses the maximum area between itself and the x-axis is the semi circle x^2 + y^2 = a^2 for y => 0

Homework Equations


INT[-a,a] ds = INT[-a,a] (1 + (dy/dx)^2)^(1/2) = pi*a
y(a) = y(-a) = 0
 
Last edited:
Physics news on Phys.org
Apply the Euler-Lagrange equations to the unconstrained functional:
(1 + (dy/dx)^2)^(1/2)+lambda*y.
The lambda is a Lagrange multiplier representing your constraint and you solve for it in the end.
 
(1 + (dy/dx)^2)^(1/2) + lambda*y = F + lambda*G

lambda = C
dy/dx = y'

No explicit dependence on x so:
(1 + (y')^2)^(1/2) + C*y - (y')^2 (1 + (y')^2)^(-1/2) = A (constant)
(1 + (y')^2) + C*y*(1 + (y')^2)^(1/2) - (y')^2 = A*(1 + (y')^2)^(1/2)
1 + C*y*(1 + (y')^2)^(1/2) = A*(1 + (y')^2)^(1/2)
1 = (A - C*y)*(1 + (y')^2)^(1/2)
1/(A - C*y) = (1 + (y')^2)^(1/2)
1/(A - C*y)^2 = (1 + (y')^2)
(y')^2 = (1/(A - C*y)^2) - 1
y' = [(1/(A - C*y)^2) - 1]^(1/2)

Substitution: 1/(A - Cy) = coshz
y = A/C - sechz/C
dy = -(tanhz.sechz)/C

Making substitutions and seperating variables:
-1/C INT[sech^2 zdz] = x + B
tanh^2 z = C^2*(x + B)^2
sech^2 z = 1 - C^2*(x + B)^2
coshz = [1 - C^2*(x + B)^2]^(-1/2)
A - Cy = [1 - C^2*(x + B)^2]^(1/2)
Cy = A - [1 - C^2*(x + B)^2]^(1/2)
y = A/C - 1/C*[1 - C^2*(x + B)^2]^(1/2)
y = A/C - [(1/C^2) - (x + B)^2]^(1/2)

Is this okay so far? I then tried:
y(a) = y(-a) = 0, which gives B = 0
Similarly I can obtain A/C = (1/C^2 - a^2)^(1/2)

But then I run out of ideas, is this right so far?
 
Are you sure it shouldn't be

lambda*(1 + (dy/dx)^2)^(1/2) + y ?
 
SunGod87 said:
Are you sure it shouldn't be

lambda*(1 + (dy/dx)^2)^(1/2) + y ?

In this case it doesn't matter much which you consider to be the constraint. Just changes lambda->1/lambda. Your solution looks to be a bit more complicated than it needs to be. But when you get down to here:

y = A/C - [(1/C^2) - (x + B)^2]^(1/2)

you are basically done. Rearrange and rename constants and it is (y+A)^2+(x+B)^2=R^2, a general equation for a circle. Now apply the contraints to determine A,B and R.
 
I tried another way and got the equation of a circle!
But I'm still stuck!

I have (x + B)^2 + (y + D)^2 = C^2
y(a) = y(-a) = 0
(a + B)^2 + (y + D)^2 = C^2
(-a + B)^2 + (y + D)^2 = C^2
so: (a + B)^2 = (-a + B)^2 and B = 0

x^2 + (y + D)^2 = C^2
Using the constraints:
y(a) = y(-a) = 0
INT[-a,a] (1 + (dy/dx)^2)^(1/2) dx = pi*a

How can I show that D = 0 and C = a, as the question requires?
 
From this point, think more geometrically. You KNOW it's circle. What circle arc connects the two points, has a center on the y-axis and a length of a*pi? Going back through the arc length formalism is needlessly painful.
 
Ah I can just write it like that. It makes sense but I was worried perhaps the lecturer was looking for something more. Thanks very much!
 

Similar threads

Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
2K
Replies
11
Views
3K
Replies
20
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
Replies
12
Views
2K