Maximum Deflection Angle In Elastic Collision

Click For Summary

Homework Help Overview

The discussion revolves around understanding the maximum deflection angle in an elastic collision, specifically focusing on the velocities of two masses involved in the collision and the application of conservation laws in a two-dimensional context.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants explore the relationship between initial and final velocities in the context of an elastic collision, questioning the definitions and reasoning behind the equations used. There is an attempt to apply the Law of Cosines and discuss the implications of velocity components in different reference frames.

Discussion Status

The discussion is ongoing, with participants seeking clarification on their reasoning and the application of concepts. Some guidance has been provided regarding the two-dimensional nature of the collision and the conservation of momentum, but no consensus has been reached on the next steps.

Contextual Notes

Participants are navigating the complexities of defining variables in different reference frames and the implications of elastic collision properties, particularly in relation to the geometry of the situation.

vibha_ganji
Messages
19
Reaction score
6
Homework Statement
Show that, in the case of an elastic collision of a particle of
mass m1 with a particle of mass m2 , initially at rest, (a) the
maximum angle m through which m1 can be deflected by the
collision is given by cos^2(theta) = 1 - (m2/m1)^2 so that
0 is less than or equal to theta which is less than or equal to pi/2 and when when m1 < m2.
Relevant Equations
v1f = ((m1-m2)/(m1+m2))*(v1i)
v of center of mass reference frame = (m1v1i + m2v2i)/(m1+m2)
I started by writing the equation v1i + v1f = 2v and then drawing a triangle with v1i, v1f, and 2v as the three sides. Then I used the Law of Cosines to solve for cos theta but this did not lead to a solution. Could I have a hint on how to begin? Thank you!
 
Physics news on Phys.org
vibha_ganji said:
I started by writing the equation v1i + v1f = 2v
Why? How are you defining those variables, and by what reasoning do you get that equation?
 
The variable v1i is the initial velocity of mass m1 in the laboratory frame and v1f is the final velocity of mass m1 in the laboratory frame.The variable v is the difference in velocity between the center of mass frame and the laboratory frame. Therefore, we can write that the initial velocity of mass m1 in the center of mass reference frame is v1i’ = v1i - v. Similarly, we can write that v1f’ = v1f - v. Since it is an elastic collision, v1i’ is the negation of v1f’. We can substitute-(v1i-v) for v1f’ and write it as -v1i+v = v1f - v. This can be simplified to v1i + v1f = 2v.
 
vibha_ganji said:
Since it is an elastic collision, v1i’ is the negation of v1f’.
No, that is only true for the components of velocity normal to the contact plane.
Notice that since m2 is initially stationary v1i and v are parallel. Your equation leads to v1f also being parallel to these.
 
Oh ok that makes more sense! Could I have a hint on how to continue?
 
vibha_ganji said:
Oh ok that makes more sense! Could I have a hint on how to continue?
The next step is to consider that this collision is two-dimensional and conserve momentum in two mutually perpendicular directions. The usual convention is to take the x-axis along the direction of motion of the projectile mass m1.

An auxiliary step would be for you to learn how to use LaTeX and use it to write your equations. It will make your equations easier to read and our advice easier to give.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
2K