Maxwell Stress Tensor in the absence of a magnetic field

Click For Summary
The discussion centers on the calculation of the Maxwell stress tensor in the absence of a magnetic field, specifically when dealing with a static electric field. The initial steps involve deriving the force density using Lorentz force and Maxwell's laws, leading to an expression for the stress tensor. There is confusion regarding the presence of terms that seem dependent on a magnetic field, particularly in the transition from force density to the stress tensor. Clarifications are provided on how to simplify the equations, emphasizing the role of dyadics in the derivation process. Ultimately, the conversation highlights the complexities of tensor calculus in electromagnetic theory, particularly when isolating electric field effects without magnetic influences.
pafcu
Messages
8
Reaction score
0
I'm having some trouble calculating the stress tensor in the case of a static electric field without a magnetic field. Following the derivation on Wikipedia,

1. Start with Lorentz force:
\mathbf{F} = q(\mathbf{E} + \mathbf{v}\times\mathbf{B})

2. Get force density
\mathbf{f} = \rho\mathbf{E} + \mathbf{J}\times\mathbf{B}

3. Substitute using Maxwell's laws
\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}

4. Replace some curls and combine
\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} + (\mathbf{B}\cdot\boldsymbol{\nabla}) \mathbf{B} \right] - \frac{1}{2} \boldsymbol{\nabla}\left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)<br /> - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)

5. Get the tensor
\sigma_{i j} = \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)

6. Assuming B=0:
\sigma_{i j} = \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right)

7. Assume flat surface with perpendicular field (z-direction)
\sigma_{z z} = \epsilon_0 \left(E^2 - \frac{1}{2} E^2\right)=\frac{\epsilon_0}{2} E^2

This is the formula given in e.g. The Feynman Lectures in Physics Vol. 2 (Page 31-14), and some other textbooks.

However, this derivation seems to assume a magnetic field until the final steps. Since most terms in eq. 4 result from the initial v x B term (even those that depend only on E, (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} and \frac{1}{2} \boldsymbol{\nabla}\epsilon_0 E^2 ), these should not be present in my case, and in fact eq 4 should be as simple as
<br /> \mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E}\right]<br />

Tensor calculus is not my strong point. To me it is not clear how to get from eq 4 to eq 5, and how modifying eq 4 alters the resulting stress tensor. Will it really still be the same as eq 6? To me it seems strange that removing terms would not affect the result, yet this seems to be what many textbooks claim. Or is there some reason why the initial v x B term can not be removed, even when there is no magnetic field?
 
Physics news on Phys.org
The first two terms of Eq. (4) should be
\mathbf{f} = \epsilon_0\left[ \boldsymbol{\nabla}\cdot( \mathbf{E}\mathbf{E}) + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right].
Then use (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E}<br /> =(1/2)\nabla({\bf E\cdot E }).
Writing these two terms with indices gives Eq. (5).
The other terms don't enter with no B field. dE/dt can't enter because this would imply a B field.
 
Last edited:
I don't understand how you get
<br /> \mathbf{f} = \epsilon_0\left[ \boldsymbol{\nabla}\cdot( \mathbf{E}\mathbf{E}) + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right]<br />

Looking at eq. 3
<br /> \mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}<br />

and assuming B = 0 gives me
<br /> \mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E}\right]<br />

Can you clarify?
 
pafcu said:
I don't understand how you get
<br /> \mathbf{f} = \epsilon_0\left[ \boldsymbol{\nabla}\cdot( \mathbf{E}\mathbf{E}) + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right]<br />

Looking at eq. 3
<br /> \mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}<br />

and assuming B = 0 gives me
<br /> \mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E}\right]<br />
Can you clarify?
It helps to know about dyadics.
(\boldsymbol{\nabla}\cdot \mathbf{E} ){\bf E}=<br /> \nabla\cdot({\bf EE})-{(\bf E\cdot\nabla)E}.
If you put in indices for that, you get what you want.
The + sign was wrong in your rirst post.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
572
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
476
  • · Replies 6 ·
Replies
6
Views
2K