P J Strydom
- 68
- 1
Damn, let me try to understand this part first.Mister T said:The phrase "travel in a direction", or indeed just the word "travel" implies that there is something else involved, because there must be something that you're traveling relative to. An observer at rest relative to that something will indeed see both pulses leave at the same time and arrive at the same time. But that observer will see those pulses move further distances and therefore take more time.
Note that we are comparing what's observed by two different observers. We are not comparing the travel times of two different pulses measured by one of the observers.
To either observer both beams take the same amount of time. The observers disagree on the amount of that time.
First. If we...
are in a spaceship in space.
And we do not know if we are traveling, or stationary...
and we pulse a light...
Einstein says that the light will travel at c independently from it's source.
we know the light will expand in a 3D shell from it's source.
Now, if the spaceship is stationary, We on this ship will observe the light traveling to the ceiling, tail and nose, arriving at its destination at the same time.
however, if this ship is moving in some direction, let's say forward in relation to the nose of the ship for this argument,
we on this ship should observe the light arriving at the tail, before the nose.
However, this is what length contraction stipulates...
The ship will contract in length and the 3D shell of light, will then reach the nose and the tail at the same time.
But, someone observing the ship from a distance. because this is what a different time frame is in my understanding,
he will see the ship moving forward, and the 3D shell of light will move to the back of this ship we are on.
is this correct?